尽管移动操作在工业和服务机器人技术方面都重要,但仍然是一个重大挑战,因为它需要将最终效应轨迹的无缝整合与导航技能以及对长匹马的推理。现有方法难以控制大型配置空间,并导航动态和未知环境。在先前的工作中,我们建议将移动操纵任务分解为任务空间中最终效果的简化运动生成器,并将移动设备分解为训练有素的强化学习代理,以说明移动基础的运动基础,以说明运动的运动可行性。在这项工作中,我们引入了移动操作的神经导航(n $^2 $ m $^2 $),该导航将这种分解扩展到复杂的障碍环境,并使其能够解决现实世界中的广泛任务。最终的方法可以在未探索的环境中执行看不见的长马任务,同时立即对动态障碍和环境变化做出反应。同时,它提供了一种定义新的移动操作任务的简单方法。我们证明了我们提出的方法在多个运动学上多样化的移动操纵器上进行的广泛模拟和现实实验的能力。代码和视频可在http://mobile-rl.cs.uni-freiburg.de上公开获得。
translated by 谷歌翻译
我们介绍了栖息地2.0(H2.0),这是一个模拟平台,用于培训交互式3D环境和复杂物理的场景中的虚拟机器人。我们为体现的AI堆栈 - 数据,仿真和基准任务做出了全面的贡献。具体来说,我们提出:(i)复制:一个由艺术家的,带注释的,可重新配置的3D公寓(匹配真实空间)与铰接对象(例如可以打开/关闭的橱柜和抽屉); (ii)H2.0:一个高性能物理学的3D模拟器,其速度超过8-GPU节点上的每秒25,000个模拟步骤(实时850x实时),代表先前工作的100倍加速;和(iii)家庭助理基准(HAB):一套辅助机器人(整理房屋,准备杂货,设置餐桌)的一套常见任务,以测试一系列移动操作功能。这些大规模的工程贡献使我们能够系统地比较长期结构化任务中的大规模加固学习(RL)和经典的感官平面操作(SPA)管道,并重点是对新对象,容器和布局的概括。 。我们发现(1)与层次结构相比,(1)平面RL政策在HAB上挣扎; (2)具有独立技能的层次结构遭受“交接问题”的困扰,(3)水疗管道比RL政策更脆。
translated by 谷歌翻译
We present a generalised architecture for reactive mobile manipulation while a robot's base is in motion toward the next objective in a high-level task. By performing tasks on-the-move, overall cycle time is reduced compared to methods where the base pauses during manipulation. Reactive control of the manipulator enables grasping objects with unpredictable motion while improving robustness against perception errors, environmental disturbances, and inaccurate robot control compared to open-loop, trajectory-based planning approaches. We present an example implementation of the architecture and investigate the performance on a series of pick and place tasks with both static and dynamic objects and compare the performance to baseline methods. Our method demonstrated a real-world success rate of over 99%, failing in only a single trial from 120 attempts with a physical robot system. The architecture is further demonstrated on other mobile manipulator platforms in simulation. Our approach reduces task time by up to 48%, while also improving reliability, gracefulness, and predictability compared to existing architectures for mobile manipulation. See https://benburgesslimerick.github.io/ManipulationOnTheMove for supplementary materials.
translated by 谷歌翻译
移动操作(MM)系统是在非结构化现实世界环境中扮演个人助理角色的理想候选者。除其他挑战外,MM需要有效协调机器人的实施例,以执行需要移动性和操纵的任务。强化学习(RL)的承诺是将机器人具有自适应行为,但是大多数方法都需要大量的数据来学习有用的控制策略。在这项工作中,我们研究了机器人可及先验在参与者批判性RL方法中的整合,以加速学习和获取任务的MM学习。也就是说,我们考虑了最佳基础位置的问题以及是否激活ARM达到6D目标的后续决定。为此,我们设计了一种新型的混合RL方法,该方法可以共同处理离散和连续的动作,从而诉诸Gumbel-Softmax重新聚集化。接下来,我们使用来自经典方法的操作机器人工作区中的数据训练可及性。随后,我们得出了增强的混合RL(BHYRL),这是一种通过将其建模为残留近似器的总和来学习Q功能的新型算法。每当需要学习新任务时,我们都可以转移我们学到的残差并了解特定于任务的Q功能的组成部分,从而从先前的行为中维护任务结构。此外,我们发现将目标政策与先前的策略正规化产生更多的表达行为。我们评估了我们在达到难度增加和提取任务的模拟方面的方法,并显示了Bhyrl在基线方法上的卓越性能。最后,我们用Bhyrl零转移了我们学到的6D提取政策,以归功于我们的MM机器人Tiago ++。有关更多详细信息和代码发布,请参阅我们的项目网站:irosalab.com/rlmmbp
translated by 谷歌翻译
学习灵巧的操纵技巧是计算机图形和机器人技术的长期挑战,尤其是当任务涉及手,工具和物体之间的复杂而微妙的互动时。在本文中,我们专注于基于筷子的对象搬迁任务,这些任务很常见却又要求。成功的筷子技巧的关键是稳定地抓住棍棒,这也支持精致的演习。我们会自动发现贝叶斯优化(BO)和深钢筋学习(DRL)的身体有效的筷子姿势,它适用于多种握把的样式和手工形态,而无需示例数据。作为输入,我们要移动发现的抓紧姿势和所需的对象,我们构建了基于物理的手部控制器,以在两个阶段完成重定位任务。首先,运动轨迹是为筷子合成的,并处于运动计划阶段。我们运动策划者的关键组件包括一个握把模型,以选择用于抓住对象的合适筷子配置,以及一个轨迹优化模块,以生成无碰撞的筷子轨迹。然后,我们再次通过DRL训练基于物理的手部控制器,以跟踪运动计划者产生的所需运动轨迹。我们通过重新定位各种形状和尺寸的对象,以多种诱人的样式和多种手工形态的位置来展示框架的功能。与试图学习基于筷子的技能的香草系统相比,我们的系统实现了更快的学习速度和更好的控制鲁棒性,而无需抓紧姿势优化模块和/或没有运动学运动计划者。
translated by 谷歌翻译
随着腿部机器人和嵌入式计算都变得越来越有能力,研究人员已经开始专注于这些机器人的现场部署。在非结构化环境中的强大自治需要对机器人周围的世界感知,以避免危害。但是,由于处理机车动力学所需的复杂规划人员和控制器,因此在网上合并在线的同时在线保持敏捷运动对腿部机器人更具挑战性。该报告将比较三种最新的感知运动方法,并讨论可以使用视觉来实现腿部自主权的不同方式。
translated by 谷歌翻译
对于移动机器人而言,与铰接式对象的交互是一项具有挑战性但重要的任务。为了应对这一挑战,我们提出了一条新型的闭环控制管道,该管道将负担能力估计的操纵先验与基于采样的全身控制相结合。我们介绍了完全反映了代理的能力和体现的代理意识提供的概念,我们表明它们的表现优于其最先进的对应物,这些对应物仅以最终效果的几何形状为条件。此外,发现闭环负担推论使代理可以将任务分为多个非连续运动,并从失败和意外状态中恢复。最后,管道能够执行长途移动操作任务,即在现实世界中开放和关闭烤箱,成功率很高(开放:71%,关闭:72%)。
translated by 谷歌翻译
通过杂乱无章的场景推动对象是一项具有挑战性的任务,尤其是当要推动的对象最初具有未知的动态和触摸其他实体时,必须避免降低损害的风险。在本文中,我们通过应用深入的强化学习来解决此问题,以制造出作用在平面表面上的机器人操纵器的推动动作,在该机器人表面上必须将物体推到目标位置,同时避免同一工作空间中的其他项目。通过从场景的深度图像和环境的其他观察结果中学到的潜在空间,例如末端效应器和对象之间的接触信息以及与目标的距离,我们的框架能够学习接触率丰富的推动行动避免与其他物体发生冲突。随着实验结果具有六个自由度机器人臂的显示,我们的系统能够从开始到端位置成功地将物体推向,同时避免附近的物体。此外,我们与移动机器人的最先进的推动控制器相比,我们评估了我们的学术策略,并表明我们的代理在成功率,与其他对象的碰撞以及在各种情况下连续对象联系方面的性能更好。
translated by 谷歌翻译
在移动操作(MM)中,机器人可以在内部导航并与其环境进行交互,因此能够完成比仅能够导航或操纵的机器人的更多任务。在这项工作中,我们探讨如何应用模仿学习(IL)来学习MM任务的连续Visuo-Motor策略。许多事先工作表明,IL可以为操作或导航域训练Visuo-Motor策略,但很少有效应用IL到MM域。这样做是挑战的两个原因:在数据方面,当前的接口使得收集高质量的人类示范困难,在学习方面,有限数据培训的政策可能会在部署时遭受协变速转变。为了解决这些问题,我们首先提出了移动操作Roboturk(Momart),这是一种新颖的遥控框架,允许同时导航和操纵移动操纵器,并在现实的模拟厨房设置中收集一类大规模的大规模数据集。然后,我们提出了一个学习错误检测系统来解决通过检测代理处于潜在故障状态时的协变量转变。我们从该数据中培训表演者的IL政策和错误探测器,在专家数据培训时,在多个多级任务中达到超过45%的任务成功率和85%的错误检测成功率。 CodeBase,DataSets,Visualization,以及更多可用的https://sites.google.com/view/il-for-mm/home。
translated by 谷歌翻译
这项工作为过度分配的平台提供了计算轻量级运动计划器。为此,定义了针对具有多个运动链的移动平台的一般状态空间模型,该模型考虑了非线性和约束。提出的运动计划者基于一种顺序多阶段方法,该方法利用了每个步骤的温暖起步。首先,使用快速行进方法生成全球最佳和平滑的2D/3D轨迹。该轨迹作为温暖的开端馈送到一个顺序线性二次调节器,该线性二次调节器能够生成一个最佳运动计划,而无需为所有平台执行器限制。最后,考虑到模型中定义的约束,生成了可行的运动计划。在这方面,再次采用了顺序线性二次调节器,以先前生成的不受限制的运动计划作为温暖的开始。这种新颖的方法已被部署到欧洲航天局的Exomars测试漫游车中。这款漫游者是具有机器人臂的可容纳Ackermann能力的行星勘探测试床。进行了几项实验,表明所提出的方法加快了计算时间的速度,增加了火星样品检索任务的成功率,可以将其视为过度插入移动平台的代表性用例。
translated by 谷歌翻译
准确的本地化是大多数机器人任务的关键要求。现有工作的主体集中在被动定位上,其中假定了机器人的动作,从而从对抽样信息性观察的影响中抽象出来。尽管最近的工作表明学习动作的好处是消除机器人的姿势,但这些方法仅限于颗粒状的离散动作,直接取决于全球地图的大小。我们提出了主动粒子滤网网络(APFN),这种方法仅依赖于本地信息来进行可能的评估以及决策。为此,我们将可区分的粒子过滤器与加固学习剂进行了介绍,该材料会参与地图中最相关的部分。最终的方法继承了粒子过滤器的计算益处,并且可以直接在连续的动作空间中起作用,同时保持完全可区分,从而端到端优化以及对输入模式的不可知。我们通过在现实世界3D扫描公寓建造的影像现实主义室内环境中进行广泛的实验来证明我们的方法的好处。视频和代码可在http://apfn.cs.uni-freiburg.de上找到。
translated by 谷歌翻译
We present a retrospective on the state of Embodied AI research. Our analysis focuses on 13 challenges presented at the Embodied AI Workshop at CVPR. These challenges are grouped into three themes: (1) visual navigation, (2) rearrangement, and (3) embodied vision-and-language. We discuss the dominant datasets within each theme, evaluation metrics for the challenges, and the performance of state-of-the-art models. We highlight commonalities between top approaches to the challenges and identify potential future directions for Embodied AI research.
translated by 谷歌翻译
3D视觉输入的对象操纵对构建可宽大的感知和政策模型构成了许多挑战。然而,现有基准中的3D资产主要缺乏与拓扑和几何中的现实世界内复杂的3D形状的多样性。在这里,我们提出了Sapien操纵技能基准(Manishill)以在全物理模拟器中的各种物体上基准操纵技巧。 Manishill中的3D资产包括大型课堂内拓扑和几何变化。仔细选择任务以涵盖不同类型的操纵挑战。 3D Vision的最新进展也使我们认为我们应该定制基准,以便挑战旨在邀请研究3D深入学习的研究人员。为此,我们模拟了一个移动的全景摄像头,返回以自我为中心的点云或RGB-D图像。此外,我们希望Manishill是为一个对操纵研究感兴趣的广泛研究人员提供服务。除了支持从互动的政策学习,我们还支持学习 - 从演示(LFD)方法,通过提供大量的高质量演示(〜36,000个成功的轨迹,总共〜1.5米点云/ RGB-D帧)。我们提供使用3D深度学习和LFD算法的基线。我们的基准(模拟器,环境,SDK和基线)的所有代码都是开放的,并且将基于基准举办跨学科研究人员面临的挑战。
translated by 谷歌翻译
如果我们想在将它们部署在现实中之前在模拟中训练机器人,那么假定减少SIM2REAL差距的人似乎很自然,并且几乎是不言而喻的,涉及创建富裕性的模拟器(因为现实就是事实)。我们挑战了这一假设并提出了相反的假设-SIM2REAL转移机器人可以通过较低(不是更高)的保真度模拟来改善。我们使用3种不同的机器人(A1,Aliengo,Spot)对这一假设进行了系统的大规模评估 - 在现实世界中以及2个不同的模拟器(栖息地和Igibson)。我们的结果表明,与期望相反,增加忠诚无助于学习。由于模拟速度缓慢(防止大规模学习)和对模拟物理学不准确的过度拟合,因此性能较差。取而代之的是,使用现实世界数据构建机器人运动的简单模型可以改善学习和概括。
translated by 谷歌翻译
虽然现代政策优化方法可以从感官数据进行复杂的操作,但他们对延长时间的地平线和多个子目标的问题挣扎。另一方面,任务和运动计划(夯实)方法规模缩放到长视野,但它们是计算昂贵的并且需要精确跟踪世界状态。我们提出了一种借鉴两种方法的方法:我们训练一项政策来模仿夯实求解器的输出。这产生了一种前馈策略,可以从感官数据完成多步任务。首先,我们构建一个异步分布式夯实求解器,可以快速产生足够的监督数据以进行模仿学习。然后,我们提出了一种分层策略架构,让我们使用部分训练的控制策略来加速夯实求解器。在具有7-自由度的机器人操纵任务中,部分训练有素的策略将规划所需的时间减少到2.6倍。在这些任务中,我们可以学习一个解决方案4对象拣选任务88%的策略从对象姿态观测和解决机器人9目标基准79%从RGB图像的时间(取平均值)跨越9个不同的任务)。
translated by 谷歌翻译
工业机器人操纵器(例如柯机)的应用可能需要在具有静态和非静态障碍物组合的环境中有效的在线运动计划。当可用的计算时间受到限制或无法完全产生解决方案时,现有的通用计划方法通常会产生较差的质量解决方案。我们提出了一个新的运动计划框架,旨在在用户定义的任务空间中运行,而不是机器人的工作空间,该框架有意将工作空间一般性交易,以计划和执行时间效率。我们的框架自动构建在线查询的轨迹库,类似于利用离线计算的以前方法。重要的是,我们的方法还提供了轨迹长度上有限的次级优势保证。关键的想法是建立称为$ \ epsilon $ -Gromov-Hausdorff近似值的近似异构体,以便在任务空间附近的点也很接近配置空间。这些边界关系进一步意味着可以平稳地串联轨迹,这使我们的框架能够解决批次查询方案,目的是找到最小长度的轨迹顺序,这些轨迹访问一组无序的目标。我们通过几种运动型配置评估了模拟框架,包括安装在移动基础上的操纵器。结果表明,我们的方法可实现可行的实时应用,并为扩展其功能提供了有趣的机会。
translated by 谷歌翻译
用于移动操作的机器人平台需要满足许多对许多现实世界应用的两个矛盾要求:需要紧凑的基础才能通过混乱的室内环境导航,而支撑需要足够大以防止翻滚或小费,尤其是在快速操纵期间有效载荷或与环境有力互动的操作。本文提出了一种新颖的机器人设计,该设计通过多功能足迹来满足这两种要求。当操纵重物时,它可以将其足迹重新配置为狭窄的配置。此外,其三角形配置可通过防止支撑开关来在不平坦的地面上进行高精度任务。提出了一种模型预测控制策略,该策略统一计划和控制,以同时导航,重新配置和操纵。它将任务空间目标转换为新机器人的全身运动计划。提出的设计已通过硬件原型进行了广泛的测试。足迹重新配置几乎可以完全消除操纵引起的振动。控制策略在实验室实验和现实世界的施工任务中被证明有效。
translated by 谷歌翻译
嘈杂的传感,不完美的控制和环境变化是许多现实世界机器人任务的定义特征。部分可观察到的马尔可夫决策过程(POMDP)提供了一个原则上的数学框架,用于建模和解决不确定性下的机器人决策和控制任务。在过去的十年中,它看到了许多成功的应用程序,涵盖了本地化和导航,搜索和跟踪,自动驾驶,多机器人系统,操纵和人类机器人交互。这项调查旨在弥合POMDP模型的开发与算法之间的差距,以及针对另一端的不同机器人决策任务的应用。它分析了这些任务的特征,并将它们与POMDP框架的数学和算法属性联系起来,以进行有效的建模和解决方案。对于从业者来说,调查提供了一些关键任务特征,以决定何时以及如何成功地将POMDP应用于机器人任务。对于POMDP算法设计师,该调查为将POMDP应用于机器人系统的独特挑战提供了新的见解,并指出了有希望的新方向进行进一步研究。
translated by 谷歌翻译
从意外的外部扰动中恢复的能力是双模型运动的基本机动技能。有效的答复包括不仅可以恢复平衡并保持稳定性的能力,而且在平衡恢复物质不可行时,也可以保证安全的方式。对于与双式运动有关的机器人,例如人形机器人和辅助机器人设备,可帮助人类行走,设计能够提供这种稳定性和安全性的控制器可以防止机器人损坏或防止伤害相关的医疗费用。这是一个具有挑战性的任务,因为它涉及用触点产生高维,非线性和致动系统的高动态运动。尽管使用基于模型和优化方法的前进方面,但诸如广泛领域知识的要求,诸如较大的计算时间和有限的动态变化的鲁棒性仍然会使这个打开问题。在本文中,为了解决这些问题,我们开发基于学习的算法,能够为两种不同的机器人合成推送恢复控制政策:人形机器人和有助于双模型运动的辅助机器人设备。我们的工作可以分为两个密切相关的指示:1)学习人形机器人的安全下降和预防策略,2)使用机器人辅助装置学习人类的预防策略。为实现这一目标,我们介绍了一套深度加强学习(DRL)算法,以学习使用这些机器人时提高安全性的控制策略。
translated by 谷歌翻译
我们研究了一种模块化方法,可以解决对象重排的长马移动操作任务,该任务将完整的任务分解为一系列子任务。为了解决整个任务,先前的工作将具有点目标导航技能的多个固定操作技巧,这些技巧是在子任务上单独学习的。尽管比整体端到端的RL政策更有效,但该框架遭受了技能链条的复杂错误,例如导航到一个不良位置,在这种情况下,固定操作技能无法达到其目标进行操纵。为此,我们建议操纵技巧应包括移动性,以便从多个位置与目标对象进行互动,同时导航技能可能具有多个终点,从而导致成功的操纵。我们通过实施移动操纵技能而不是固定技能来实现这些想法,并训练接受区域目标而不是积分目标的导航技能。我们在家庭助理基准(HAB)中评估了三个挑战性的长途移动操纵任务M3,并在3个挑战性的长途移动操纵任务上评估了我们的多技能,并且与基线相比表现出了出色的性能。
translated by 谷歌翻译