现有的出版物表明,限制票据数据可用于预测股票市场的短期波动性。由于股票不独立,因此一股股票的变化也会影响其他相关股票。在本文中,我们有兴趣以基于限制票据数据和关系数据的多变量方法预测短期实现波动性。为实现这一目标,我们引入了绘图变压器网络以实现波动预测。该模型允许组合限制票据特征和与不同来源的无限数量的时间和横截面关系。通过基于S&P 500指数的大约500股股票的实验,我们为我们的模型找到了比其他基准更好的表现。
translated by 谷歌翻译
由于市场的不确定性,预测文本信息的股票价格是一个具有挑战性的任务,并且难以理解机器的观点。以前的研究主要关注基于单一新闻的情绪提取。但是,金融市场上的股票可以高度相关,有关一股股票的一个新闻可以迅速影响其他股票的价格。要考虑到这一效果,我们提出了一种新的股票运动预测框架:用于库存预测(MGRN)的多图复发网络。该架构允许将文本情绪与其他财务数据中提取的财务新闻和多个关系信息相结合。通过精度测试和STOXX Europe 600指数中的股票的交易仿真,我们展示了我们模型的更好的性能而不是其他基准。
translated by 谷歌翻译
在许多研究中已经表明,考虑相关股票数据预测股票价格变动的重要性,但是,用于建模,嵌入和分析相互关联股票行为的先进图形技术尚未被广泛利用,以预测股票价格变动。该领域的主要挑战是找到一种建模任意股票之间现有关系的方法,并利用这种模型来改善这些股票的预测绩效。该领域中的大多数现有方法都取决于基本的图形分析技术,预测能力有限,并且缺乏通用性和灵活性。在本文中,我们介绍了一个名为GCNET的新颖框架,该框架将任意股票之间的关系建模为称为“影响网络”的图形结构,并使用一组基于历史的预测模型来推断出股票子集的合理初始标签图中的节点。最后,GCNET使用图形卷积网络算法来分析此部分标记的图形,并预测图中每个库存的下一个运动价格方向。 GCNET是一个一般预测框架,可以根据其历史数据来预测相互作用股票的价格波动。我们对纳斯达克指数一组股票的实验和评估表明,GCNET在准确性和MCC测量方面显着提高了SOTA的性能。
translated by 谷歌翻译
保持个人特征和复杂的关系,广泛利用和研究了图表数据。通过更新和聚合节点的表示,能够捕获结构信息,图形神经网络(GNN)模型正在获得普及。在财务背景下,该图是基于实际数据构建的,这导致复杂的图形结构,因此需要复杂的方法。在这项工作中,我们在最近的财务环境中对GNN模型进行了全面的审查。我们首先将普通使用的财务图分类并总结每个节点的功能处理步骤。然后,我们总结了每个地图类型的GNN方法,每个区域的应用,并提出一些潜在的研究领域。
translated by 谷歌翻译
预测中小型企业(SME)的破产风险(SME)是金融机构在做出贷款时的重要一步。但是,金融和AI研究领域的现有研究倾向于仅考虑企业内风险或传染性风险,而忽略了它们的相互作用和组合效应。这项研究首次考虑了在破产预测中的风险及其共同影响。具体而言,我们首先根据其风险内学习的统计学意义企业风险指标提出了企业内风险编码器。然后,我们根据企业关系信息从企业知识图中提出了一个企业传染风险编码器,以进行其传染风险嵌入。特别是,传染风险编码器既包括新提出的高图神经网络和异质图神经网络,这些神经网络可以在两个不同方面建模传播风险,即基于超系统的常见风险因素和直接扩散的风险。为了评估该模型,我们收集了SME上的现实世界多源数据数据,并构建了一个名为SMESD的新型基准数据集。我们提供对数据集的开放访问权限,该数据集有望进一步促进财务风险分析的研究。针对十二个最先进的基线的SMESD实验证明了拟议模型对破产预测的有效性。
translated by 谷歌翻译
The stock market prediction has been a traditional yet complex problem researched within diverse research areas and application domains due to its non-linear, highly volatile and complex nature. Existing surveys on stock market prediction often focus on traditional machine learning methods instead of deep learning methods. Deep learning has dominated many domains, gained much success and popularity in recent years in stock market prediction. This motivates us to provide a structured and comprehensive overview of the research on stock market prediction focusing on deep learning techniques. We present four elaborated subtasks of stock market prediction and propose a novel taxonomy to summarize the state-of-the-art models based on deep neural networks from 2011 to 2022. In addition, we also provide detailed statistics on the datasets and evaluation metrics commonly used in the stock market. Finally, we highlight some open issues and point out several future directions by sharing some new perspectives on stock market prediction.
translated by 谷歌翻译
多变量时间序列预测,分析历史时序序列以预测未来趋势,可以有效地帮助决策。 MTS中变量之间的复杂关系,包括静态,动态,可预测和潜在的关系,使得可以挖掘MTS的更多功能。建模复杂关系不仅是表征潜在依赖性的必要条件以及建模时间依赖性,而且在MTS预测任务中也带来了极大的挑战。然而,现有方法主要关注模拟MTS变量之间的某些关系。在本文中,我们提出了一种新的端到端深度学习模型,通过异构图形神经网络(MTHETGNN)称为多变量时间序列预测。为了表征变量之间的复杂关系,在MTHETGNN中设计了一个关系嵌入模块,其中每个变量被视为图形节点,并且每种类型的边缘表示特定的静态或动态关系。同时,引入了时间嵌入模块的时间序列特征提取,其中涉及具有不同感知尺度的卷积神经网络(CNN)滤波器。最后,采用异质图形嵌入模块来处理由两个模块产生的复杂结构信息。来自现实世界的三个基准数据集用于评估所提出的MTHETGNN。综合实验表明,MTHETGNN在MTS预测任务中实现了最先进的结果。
translated by 谷歌翻译
在各种下游机器学习任务中,多元时间序列的可靠和有效表示至关重要。在多元时间序列预测中,每个变量都取决于其历史值,并且变量之间也存在相互依存关系。必须设计模型以捕获时间序列之间的内部和相互关系。为了朝着这一目标迈进,我们提出了时间序列注意变压器(TSAT),以进行多元时间序列表示学习。使用TSAT,我们以边缘增强动态图来表示多元时间序列的时间信息和相互依赖性。在动态图中的节点表示,串行中的相关性表示。修改了一种自我注意力的机制,以使用超经验模式分解(SMD)模块捕获序列间的相关性。我们将嵌入式动态图应用于时代序列预测问题,包括两个现实世界数据集和两个基准数据集。广泛的实验表明,TSAT显然在各种预测范围内使用六种最先进的基线方法。我们进一步可视化嵌入式动态图,以说明TSAT的图形表示功能。我们在https://github.com/radiantresearch/tsat上共享代码。
translated by 谷歌翻译
由于其免费形式和丰富的信息,收入电话会议吸引了越来越多的研究人员。但是,现有的研究不考虑说话者角色信息。此外,当前的研究并未充分说明公司间关系对公司风险的影响。唯一整合公司网络和收益电话会议的研究是为在不同日期举行收益电话会议的公司构建的无向图表,未能满足没有针对预测任务的时间信息泄漏的要求。为了解决上述问题,我们提出了一个名为“时间虚拟图神经网络(TVGNN)”的新模型,该模型结合了收入电话会议和公司网络以预测公司风险。我们的模型首次将参与者角色信息包含在对话建模中。此外,我们开发了一种新方法来构建公司网络,以确保图表中没有时间信息泄漏。在实验中,我们提出的模型的表现优于所有基准。补充分析证明了该模型的有效性和解释性。
translated by 谷歌翻译
多变量时间序列(MTS)预测是许多领域的重要问题。准确的预测结果可以有效地帮助决策。迄今为止,已经提出了许多MTS预测方法并广泛应用。但是,这些方法假设单个变量的预测值受到所有其他变量的影响,这忽略了变量之间的因果关系。为了解决上述问题,我们提出了一种新的端到端深度学习模式,称为本文的神经格兰特因果关系图形神经网络(CAUGNN)。要在变量间的因果信息中表征,我们在模型中介绍了神经格子因果关系图。每个变量被视为图形节点,每个边缘表示变量之间的随意关系。另外,具有不同感知尺度的卷积神经网络(CNN)过滤器用于时间序列特征提取,其用于生成每个节点的特征。最后,采用图形神经网络(GNN)来解决MTS产生的图形结构的预测问题。来自现实世界的三个基准数据集用于评估提议的Caugnn。综合实验表明,该方法在MTS预测任务中实现了最先进的结果。
translated by 谷歌翻译
良好的研究努力致力于利用股票预测中的深度神经网络。虽然远程依赖性和混沌属性仍然是在预测未来价格趋势之前降低最先进的深度学习模型的表现。在这项研究中,我们提出了一个新的框架来解决这两个问题。具体地,在将时间序列转换为复杂网络方面,我们将市场价格系列转换为图形。然后,从映射的图表中提取参考时间点和节点权重之间的关联的结构信息以解决关于远程依赖性和混沌属性的问题。我们采取图形嵌入式以表示时间点之间的关联作为预测模型输入。节点重量被用作先验知识,以增强时间关注的学习。我们拟议的框架的有效性通过现实世界股票数据验证,我们的方法在几个最先进的基准中获得了最佳性能。此外,在进行的交易模拟中,我们的框架进一步获得了最高的累积利润。我们的结果补充了复杂网络方法在金融领域的现有应用,并为金融市场中决策支持的投资应用提供了富有识别的影响。
translated by 谷歌翻译
预测抗流动过程中感染的数量对政府制定抗流动策略极为有益,尤其是在细粒度的地理单位中。以前的工作着重于低空间分辨率预测,例如县级和预处理数据到同一地理水平,这将失去一些有用的信息。在本文中,我们提出了一个基于两个地理水平的数据,用于社区级别的COVID-19预测,该模型(FGC-COVID)基于数据。我们使用比社区更细粒度的地理水平(CBG)之间的人口流动数据来构建图形,并使用图形神经网络(GNN)构建图形并捕获CBG之间的依赖关系。为了预测,为了预测更细粒度的模式,引入了空间加权聚合模块,以将CBG的嵌入基于其地理隶属关系和空间自相关,将CBG的嵌入到社区水平上。在300天LA COVID-19数据中进行的大量实验表明,我们的模型的表现优于社区级Covid-19预测的现有预测模型。
translated by 谷歌翻译
Recent years have witnessed the emerging success of graph neural networks (GNNs) for modeling structured data. However, most GNNs are designed for homogeneous graphs, in which all nodes and edges belong to the same types, making them infeasible to represent heterogeneous structures. In this paper, we present the Heterogeneous Graph Transformer (HGT) architecture for modeling Web-scale heterogeneous graphs. To model heterogeneity, we design node-and edge-type dependent parameters to characterize the heterogeneous attention over each edge, empowering HGT to maintain dedicated representations for different types of nodes and edges. To handle dynamic heterogeneous graphs, we introduce the relative temporal encoding technique into HGT, which is able to capture the dynamic structural dependency with arbitrary durations. To handle Web-scale graph data, we design the heterogeneous mini-batch graph sampling algorithm-HGSampling-for efficient and scalable training. Extensive experiments on the Open Academic Graph of 179 million nodes and 2 billion edges show that the proposed HGT model consistently outperforms all the state-of-the-art GNN baselines by 9%-21% on various downstream tasks. The dataset and source code of HGT are publicly available at https://github.com/acbull/pyHGT.
translated by 谷歌翻译
股票运动预测(SMP)旨在预测上市公司的股份量股份,由于金融市场的挥发性,这是一个具有挑战性的任务。最近的财务研究表明,动量溢出效应在股票波动中发挥着重要作用。然而,以前的研究通常只学习相关公司之间的简单连接信息,这不可避免地未能模仿真实金融市场中上市公司的复杂关系。为了解决这个问题,我们首先建立一个更全面的市场知识图(MKG),其中包含有限的公司,包括上市公司及其相关的高管,以及包括明确关系和隐性关系的混合关系。之后,我们提出了一种新颖的双重关注网络,以了解基于构造的MKG用于库存预测的势头溢出信号。对九个SOTA基线构建数据集的实证实验表明,所提出的丹林公司能够改善与构造的MKG的库存预测。
translated by 谷歌翻译
预测基于图的时间依赖性数据具有许多实际应用。此任务具有挑战性,因为模型不仅需要捕获数据中的空间依赖性和时间依赖性,而且还需要利用有用的辅助信息来进行准确的预测。在本文中,我们分析了最新模型对处理时间依赖性的局限性。为了解决此限制,我们提出了GSA-Forecaster,这是一种用于预测基于图的时间相关数据的新的深度学习模型。 GSA-Forecaster利用图形序列注意(GSA)是本文提出的一种新的注意机制,用于有效捕获时间依赖性。 GSA-Forecaster将数据的图结构嵌入其架构中,以解决空间依赖性。 GSA-ForeCaster还占用辅助信息,以进一步改善预测。我们通过基于大型现实图的时间依赖性数据评估GSA-Forecaster,并证明了其对最先进模型的有效性,该模型具有6.7%的RMSE和5.8%的MAPE降低。
translated by 谷歌翻译
各种深度学习模型,尤其是一些最新的基于变压器的方法,已大大改善了长期时间序列预测的最新性能。但是,这些基于变压器的模型遭受了严重的恶化性能,并延长了输入长度除了使用扩展的历史信息。此外,这些方法倾向于在长期预测中处理复杂的示例,并增加模型复杂性,这通常会导致计算的显着增加和性能较低的鲁棒性(例如,过度拟合)。我们提出了一种新型的神经网络架构,称为Treedrnet,以进行更有效的长期预测。受稳健回归的启发,我们引入了双重残差链接结构,以使预测更加稳健。对Kolmogorov-Arnold表示定理进行了明确的介绍,并明确介绍了特征选择,模型集合和树结构,以进一步利用扩展输入序列,从而提高了可靠的输入序列和Treedrnet的代表力。与以前的顺序预测工作的深层模型不同,Treedrnet完全建立在多层感知下,因此具有很高的计算效率。我们广泛的实证研究表明,Treedrnet比最先进的方法更有效,将预测错误降低了20%至40%。特别是,Treedrnet的效率比基于变压器的方法高10倍。该代码将很快发布。
translated by 谷歌翻译
人口级社会事件,如民事骚乱和犯罪,往往对我们的日常生活产生重大影响。预测此类事件对于决策和资源分配非常重要。由于缺乏关于事件发生的真实原因和潜在机制的知识,事件预测传统上具有挑战性。近年来,由于两个主要原因,研究事件预测研究取得了重大进展:(1)机器学习和深度学习算法的开发和(2)社交媒体,新闻来源,博客,经济等公共数据的可访问性指标和其他元数据源。软件/硬件技术中的数据的爆炸性增长导致了社会事件研究中的深度学习技巧的应用。本文致力于提供社会事件预测的深层学习技术的系统和全面概述。我们专注于两个社会事件的域名:\ Texit {Civil unrest}和\ texit {犯罪}。我们首先介绍事件预测问题如何作为机器学习预测任务制定。然后,我们总结了这些问题的数据资源,传统方法和最近的深度学习模型的发展。最后,我们讨论了社会事件预测中的挑战,并提出了一些有希望的未来研究方向。
translated by 谷歌翻译
交通预测在智能交通系统中很重要,有利于交通安全,但由于现实世界交通系统中的复杂和动态的时空依赖性,这是非常具有挑战性的。先前的方法使用预定义或学习的静态图来提取空间相关性。但是,基于静态图形的方法无法挖掘交通网络的演变。研究人员随后为每次切片生成动态图形以反映空间相关性的变化,但它们遵循独立建模的时空依赖性的范例,忽略了串行空间影响。在本文中,我们提出了一种新的基于跨时动态图形的深度学习模型,名为CDGNet,用于交通预测。该模型能够通过利用横行动态图来有效地捕获每个时切片和其历史时片之间的串联空间依赖性。同时,我们设计了稀疏横行动态图的浇注机制,符合现实世界中的稀疏空间相关性。此外,我们提出了一种新颖的编码器解码器架构,用于结合基于交叉时间动态图形的GCN,用于多步行量预测。三个现实世界公共交通数据集的实验结果表明CDGNET优于最先进的基线。我们还提供了一种定性研究来分析我们建筑的有效性。
translated by 谷歌翻译
最近的研究表明,在将图神经网络应用于多元时间序列预测中,其中时间序列的相互作用被描述为图形结构,并且变量表示为图节点。沿着这一行,现有方法通常假定确定图神经网络的聚合方式的图形结构(或邻接矩阵)是根据定义或自学来固定的。但是,变量的相互作用在现实情况下可以是动态的和进化的。此外,如果在不同的时间尺度上观察到时间序列的相互作用序列的相互作用大不相同。为了使图形神经网络具有灵活而实用的图结构,在本文中,我们研究了如何对时间序列的进化和多尺度相互作用进行建模。特别是,我们首先提供与扩张的卷积配合的层次图结构,以捕获时间序列之间的比例特定相关性。然后,以经常性的方式构建了一系列邻接矩阵,以表示每一层的不断发展的相关性。此外,提供了一个统一的神经网络来集成上述组件以获得最终预测。这样,我们可以同时捕获成对的相关性和时间依赖性。最后,对单步和多步骤预测任务的实验证明了我们方法比最新方法的优越性。
translated by 谷歌翻译
交通流量的技术预测在智能运输系统中起着重要作用。基于图形神经网络和注意机制,大多数先前的作品都利用变压器结构来发现时空依赖性和动态关系。但是,他们尚未彻底考虑时空序列之间的相关信息。在本文中,基于最大信息系数,我们提出了两种详尽的时空表示,空间相关信息(SCORR)和时间相关信息(TCORR)。使用SCORR,我们提出了一个基于相关信息的时空网络(CORRSTN),该网络包括一个动态图神经网络组件,可有效地将相关信息整合到空间结构中,以及一个多头注意力组件,以准确地对动态时间依赖性进行建模。利用TCORR,我们探索了不同周期数据之间的相关模式,以识别最相关的数据,然后设计有效的数据选择方案以进一步增强模型性能。公路交通流量(PEMS07和PEMS08)和地铁人群流(HZME流入和流出)数据集的实验结果表明,Corrstn在预测性能方面表现出了最先进的方法。特别是,在HZME(流出)数据集上,与ASTGNN模型相比,我们的模型在MAE,RMSE和MAPE的指标中分别提高了12.7%,14.4%和27.4%。
translated by 谷歌翻译