云和雪在可见和近红外(VNIR)范围内具有类似的光谱特征,因此难以在高分辨率VNIR图像中彼此区分。我们通过引入短波红外(SWIR)频段来解决这个问题,其中云具有高度反射性,雪是吸收的。由于与VNIR相比,由于苏尔州的分辨率通常是较低的分辨率,本研究提出了一种可以在VNIR图像中有效地检测云和雪的多分辨率全卷积神经网络(FCN)。我们融合了深fcn内的多分辨率频段,并在较高的VNIR分辨率下执行语义分割。这种基于融合的分类器,以端到端的方式训练,实现了94.31%的总体准确性和F1分数,在印度乌塔塔克手的州捕获的资源-2数据上的云。发现这些评分比随机森林分类器高30%,比独立单分辨率FCN高10%。除了对云检测目的有用外,该研究还突出了多传感器融合问题的卷积神经网络的潜力。
translated by 谷歌翻译
我们向传感器独立性(Sensei)介绍了一种新型神经网络架构 - 光谱编码器 - 通过该传感器独立性(Sensei) - 通过其中具有不同组合的光谱频带组合的多个多光谱仪器可用于训练广义深度学习模型。我们专注于云屏蔽的问题,使用几个预先存在的数据集,以及Sentinel-2的新的自由可用数据集。我们的模型显示在卫星上实现最先进的性能,它受过训练(Sentinel-2和Landsat 8),并且能够推断到传感器,它在训练期间尚未见过Landsat 7,每\ 'USAT-1,和Sentinel-3 SLST。当多种卫星用于培训,接近或超越专用单传感器型号的性能时,模型性能显示出改善。这项工作是激励遥感社区可以使用巨大各种传感器采取的数据的动机。这不可避免地导致标记用于不同传感器的努力,这限制了深度学习模型的性能,因为他们需要最佳地执行巨大的训练。传感器独立性可以使深度学习模型能够同时使用多个数据集进行培训,提高性能并使它们更广泛适用。这可能导致深入学习方法,用于在板载应用程序和地面分段数据处理中更频繁地使用,这通常需要模型在推出时或之后即将开始。
translated by 谷歌翻译
这项研究介绍了\ textit {landslide4sense},这是一种从遥感中检测到滑坡检测的参考基准。该存储库具有3,799个图像贴片,可从Sentinel-2传感器中融合光学层,并带有数字高程模型和来自ALOS Palsar的斜率层。附加的地形信息促进了对滑坡边界的准确检测,而最近的研究表明,仅使用光学数据,这是具有挑战性的。广泛的数据集支持在滑坡检测中进行深度学习(DL)研究,以及用于系统更新滑坡库存的方法的开发和验证。基准数据集已在四个不同的时间和地理位置收集:伊伯里(2018年9月),科达古(2018年8月),戈尔卡(2015年4月)和台湾(2009年8月)。每个图像像素均标记为属于滑坡,包括各种来源和彻底的手动注释。然后,我们评估11个最先进的DL分割模型的滑坡检测性能:U-NET,RESU-NET,PSPNET,CONTECTNET,DEEPLAB-V2,DEEPLAB-V3+,FCN-8,LINKNET,FRRRN-A,FRRN-A,, FRRN-B和SQNET。所有型号均已从划痕上对每个研究区域的四分之一的补丁进行培训,并在其他三个季度的独立贴片上进行了测试。我们的实验表明,Resu-NET的表现优于其他模型,用于滑坡检测任务。我们在\ url {www.landslide4sense.org}公开获得多种源滑坡基准数据(Landslide4sense)和经过测试的DL模型,为遥感,计算机视觉和机器学习社区建立了重要的资源通常,尤其是对滑坡检测的应用。
translated by 谷歌翻译
近年来,地理空间行业一直在稳定发展。这种增长意味着增加卫星星座,每天都会产生大量的卫星图像和其他遥感数据。有时,这些信息,即使在某些情况下我们指的是公开可用的数据,由于它的大小,它也无法占据。从时间和其他资源的角度来看,借助人工或使用传统的自动化方法来处理如此大量的数据并不总是可行的解决方案。在目前的工作中,我们提出了一种方法,用于创建一个由公开可用的遥感数据组成的多模式和时空数据集,并使用ART机器学习(ML)技术进行可行性进行测试。确切地说,卷积神经网络(CNN)模型的用法能够分离拟议数据集中存在的不同类别的植被。在地理信息系统(GIS)和计算机视觉(CV)的背景下,类似方法的受欢迎程度和成功更普遍地表明,应考虑并进一步分析和开发方法。
translated by 谷歌翻译
卫星遥感提供了一种具有成本效益的概要洪水监测的解决方案,卫星衍生的洪水图为传统上使用的数值洪水淹没模型提供了一种计算有效的替代方法。尽管卫星碰巧涵盖正在进行的洪水事件时确实提供了及时的淹没信息,但它们受其时空分辨率的限制,因为它们在各种规模上动态监测洪水演变的能力。不断改善对新卫星数据源的访问以及大数据处理功能,就此问题的数据驱动解决方案而言,已经解锁了前所未有的可能性。具体而言,来自卫星的数据融合,例如哥白尼前哨,它们具有很高的空间和低时间分辨率,以及来自NASA SMAP和GPM任务的数据,它们的空间较低,但时间较高的时间分辨率可能会导致高分辨率的洪水淹没在A处的高分辨率洪水。每日规模。在这里,使用Sentinel-1合成孔径雷达和各种水文,地形和基于土地利用的预测因子衍生出的洪水淹没图对卷积神经网络进行了训练,以预测高分辨率的洪水泛滥概率图。使用Sentinel-1和Sentinel-2衍生的洪水面罩,评估了UNET和SEGNET模型架构的性能,分别具有95%的信心间隔。精确召回曲线(PR-AUC)曲线下的区域(AUC)被用作主要评估指标,这是由于二进制洪水映射问题中类固有的不平衡性质,最佳模型提供了PR-AUC 0.85。
translated by 谷歌翻译
Fusing satellite imagery acquired with different sensors has been a long-standing challenge of Earth observation, particularly across different modalities such as optical and Synthetic Aperture Radar (SAR) images. Here, we explore the joint analysis of imagery from different sensors in the light of representation learning: we propose to learn a joint embedding of multiple satellite sensors within a deep neural network. Our application problem is the monitoring of lake ice on Alpine lakes. To reach the temporal resolution requirement of the Swiss Global Climate Observing System (GCOS) office, we combine three image sources: Sentinel-1 SAR (S1-SAR), Terra MODIS, and Suomi-NPP VIIRS. The large gaps between the optical and SAR domains and between the sensor resolutions make this a challenging instance of the sensor fusion problem. Our approach can be classified as a late fusion that is learned in a data-driven manner. The proposed network architecture has separate encoding branches for each image sensor, which feed into a single latent embedding. I.e., a common feature representation shared by all inputs, such that subsequent processing steps deliver comparable output irrespective of which sort of input image was used. By fusing satellite data, we map lake ice at a temporal resolution of < 1.5 days. The network produces spatially explicit lake ice maps with pixel-wise accuracies > 91% (respectively, mIoU scores > 60%) and generalises well across different lakes and winters. Moreover, it sets a new state-of-the-art for determining the important ice-on and ice-off dates for the target lakes, in many cases meeting the GCOS requirement.
translated by 谷歌翻译
通过卫星摄像机获取关于地球表面的大面积的信息使我们能够看到远远超过我们在地面上看到的更多。这有助于我们在检测和监测土地使用模式,大气条件,森林覆盖和许多非上市方面的地区的物理特征。所获得的图像不仅跟踪连续的自然现象,而且对解决严重森林砍伐的全球挑战也至关重要。其中亚马逊盆地每年占最大份额。适当的数据分析将有助于利用可持续健康的氛围来限制对生态系统和生物多样性的不利影响。本报告旨在通过不同的机器学习和优越的深度学习模型用大气和各种陆地覆盖或土地使用亚马逊雨林的卫星图像芯片。评估是基于F2度量完成的,而用于损耗函数,我们都有S形跨熵以及Softmax交叉熵。在使用预先训练的ImageNet架构中仅提取功能之后,图像被间接馈送到机器学习分类器。鉴于深度学习模型,通过传输学习使用微调Imagenet预训练模型的集合。到目前为止,我们的最佳分数与F2度量为0.927。
translated by 谷歌翻译
Remote sensing of the Earth's surface water is critical in a wide range of environmental studies, from evaluating the societal impacts of seasonal droughts and floods to the large-scale implications of climate change. Consequently, a large literature exists on the classification of water from satellite imagery. Yet, previous methods have been limited by 1) the spatial resolution of public satellite imagery, 2) classification schemes that operate at the pixel level, and 3) the need for multiple spectral bands. We advance the state-of-the-art by 1) using commercial imagery with panchromatic and multispectral resolutions of 30 cm and 1.2 m, respectively, 2) developing multiple fully convolutional neural networks (FCN) that can learn the morphological features of water bodies in addition to their spectral properties, and 3) FCN that can classify water even from panchromatic imagery. This study focuses on rivers in the Arctic, using images from the Quickbird, WorldView, and GeoEye satellites. Because no training data are available at such high resolutions, we construct those manually. First, we use the RGB, and NIR bands of the 8-band multispectral sensors. Those trained models all achieve excellent precision and recall over 90% on validation data, aided by on-the-fly preprocessing of the training data specific to satellite imagery. In a novel approach, we then use results from the multispectral model to generate training data for FCN that only require panchromatic imagery, of which considerably more is available. Despite the smaller feature space, these models still achieve a precision and recall of over 85%. We provide our open-source codes and trained model parameters to the remote sensing community, which paves the way to a wide range of environmental hydrology applications at vastly superior accuracies and 2 orders of magnitude higher spatial resolution than previously possible.
translated by 谷歌翻译
Deep learning semantic segmentation algorithms have provided improved frameworks for the automated production of Land-Use and Land-Cover (LULC) maps, which significantly increases the frequency of map generation as well as consistency of production quality. In this research, a total of 28 different model variations were examined to improve the accuracy of LULC maps. The experiments were carried out using Landsat 5/7 or Landsat 8 satellite images with the North American Land Change Monitoring System labels. The performance of various CNNs and extension combinations were assessed, where VGGNet with an output stride of 4, and modified U-Net architecture provided the best results. Additional expanded analysis of the generated LULC maps was also provided. Using a deep neural network, this work achieved 92.4% accuracy for 13 LULC classes within southern Manitoba representing a 15.8% improvement over published results for the NALCMS. Based on the large regions of interest, higher radiometric resolution of Landsat 8 data resulted in better overall accuracies (88.04%) compare to Landsat 5/7 (80.66%) for 16 LULC classes. This represents an 11.44% and 4.06% increase in overall accuracy compared to previously published NALCMS results, including larger land area and higher number of LULC classes incorporated into the models compared to other published LULC map automation methods.
translated by 谷歌翻译
有效的早期检测马铃薯晚枯萎病(PLB)是马铃薯栽培的必要方面。然而,由于缺乏在冠层水平上缺乏视觉线索,在具有传统成像方法的领域的早期阶段来检测晚期枯萎是一项挑战。高光谱成像可以,捕获来自宽范围波长的光谱信号也在视觉波长之外。在这种情况下,通过将2D卷积神经网络(2D-CNN)和3D-CNN与深度合作的网络(PLB-2D-3D-A)组合来提出高光谱图像的深度学习分类架构。首先,2D-CNN和3D-CNN用于提取丰富的光谱空间特征,然后使用注意力块和SE-RESET用于强调特征图中的突出特征,并提高模型的泛化能力。数据集采用15,360张图像(64x64x204)构建,从在实验领域捕获的240个原始图像裁剪,具有超过20种马铃薯基因型。 2000年图像的测试数据集中的精度在全带中达到0.739,特定带中的0.790(492nm,519nm,560nm,592nm,717nm和765nm)。本研究表明,具有深入学习和近端高光谱成像的早期检测PLB的令人鼓舞的结果。
translated by 谷歌翻译
由于技术成本的降低和卫星发射的增加,卫星图像变得越来越流行和更容易获得。除了提供仁慈的目的外,还可以出于恶意原因(例如错误信息)使用卫星数据。事实上,可以依靠一般图像编辑工具来轻松操纵卫星图像。此外,随着深层神经网络(DNN)的激增,可以生成属于各种领域的现实合成图像,与合成生成的卫星图像的扩散有关的其他威胁正在出现。在本文中,我们回顾了关于卫星图像的产生和操纵的最新技术(SOTA)。特别是,我们既关注从头开始的合成卫星图像的产生,又要通过图像转移技术对卫星图像进行语义操纵,包括从一种类型的传感器到另一种传感器获得的图像的转换。我们还描述了迄今已研究的法医检测技术,以对合成图像伪造进行分类和检测。虽然我们主要集中在法医技术上明确定制的,该技术是针对AI生成的合成内容物的检测,但我们还审查了一些用于一般剪接检测的方法,这些方法原则上也可以用于发现AI操纵图像
translated by 谷歌翻译
前所未有的访问多时间卫星图像,为各种地球观察任务开辟了新的视角。其中,农业包裹的像素精确的Panoptic分割具有重大的经济和环境影响。虽然研究人员对单张图像进行了探索了这个问题,但我们争辩说,随着图像的时间序列更好地寻址作物候选的复杂时间模式。在本文中,我们介绍了卫星图像时间序列(坐着)的Panoptic分割的第一端到端,单级方法(坐姿)。该模块可以与我们的新型图像序列编码网络相结合,依赖于时间自我关注,以提取丰富和自适应的多尺度时空特征。我们还介绍了Pastis,第一个开放式访问坐在Panoptic注释的数据集。我们展示了对多个竞争架构的语义细分的编码器的优越性,并建立了坐在的第一封Panoptic细分状态。我们的实施和痛苦是公开的。
translated by 谷歌翻译
与现场测量相比,遥感益处可以通过使大面积的监控更容易地进行栖息地保护,尤其是在可以自动分析遥感数据的情况下。监测的一个重要方面是对受监视区域中存在的栖息地类型进行分类和映射。自动分类是一项艰巨的任务,因为课程具有细粒度的差异,并且它们的分布是长尾巴且不平衡的。通常,用于自动土地覆盖分类的培训数据取决于完全注释的分割图,从遥感的图像到相当高的分类学,即森林,农田或市区等类别。自动栖息地分类的挑战是可靠的数据注释需要现场策略。因此,完整的分割图的生产成本很高,训练数据通常很稀疏,类似点,并且仅限于可以步行访问的区域。需要更有效地利用这些有限数据的方法。我们通过提出一种栖息地分类和映射的方法来解决这些问题,并应用此方法将整个芬兰拉普兰北部地区分类为Natura2000类。该方法的特征是使用从现场收集的细粒,稀疏,单像素注释,并与大量未经通知的数据结合在一起来产生分割图。比较了监督,无监督和半监督的方法,并证明了从较大的室外数据集中转移学习的好处。我们提出了一个\ ac {cnn}偏向于中心像素分类,与随机的森林分类器结合使用,该分类器比单独的模型本身产生更高的质量分类。我们表明,增加种植,测试时间的增加和半监督的学习可以进一步帮助分类。
translated by 谷歌翻译
We present a novel and practical deep fully convolutional neural network architecture for semantic pixel-wise segmentation termed SegNet. This core trainable segmentation engine consists of an encoder network, a corresponding decoder network followed by a pixel-wise classification layer. The architecture of the encoder network is topologically identical to the 13 convolutional layers in the VGG16 network [1]. The role of the decoder network is to map the low resolution encoder feature maps to full input resolution feature maps for pixel-wise classification. The novelty of SegNet lies is in the manner in which the decoder upsamples its lower resolution input feature map(s). Specifically, the decoder uses pooling indices computed in the max-pooling step of the corresponding encoder to perform non-linear upsampling. This eliminates the need for learning to upsample. The upsampled maps are sparse and are then convolved with trainable filters to produce dense feature maps. We compare our proposed architecture with the widely adopted FCN [2] and also with the well known DeepLab-LargeFOV [3], DeconvNet [4] architectures. This comparison reveals the memory versus accuracy trade-off involved in achieving good segmentation performance. SegNet was primarily motivated by scene understanding applications. Hence, it is designed to be efficient both in terms of memory and computational time during inference. It is also significantly smaller in the number of trainable parameters than other competing architectures and can be trained end-to-end using stochastic gradient descent. We also performed a controlled benchmark of SegNet and other architectures on both road scenes and SUN RGB-D indoor scene segmentation tasks. These quantitative assessments show that SegNet provides good performance with competitive inference time and most efficient inference memory-wise as compared to other architectures. We also provide a Caffe implementation of SegNet and a web demo at http://mi.eng.cam.ac.uk/projects/segnet/.
translated by 谷歌翻译
高分辨率遥感图像用于广泛的任务,包括对象的检测和分类。然而,高分辨率图像昂贵,而较低的分辨率图像通常是可自由的可用的,并且可以由公众用于社会良好应用范围。为此,我们使用从Spacenet 7挑战的PlanetsCope图像策划多个频谱多图像超分辨率数据集作为高分辨率参考和与低分辨率图像相同的图像的多个Sentinel-2重新定位。我们介绍了将多图像超分辨率(MISR)应用于多光谱遥感图像的第一个结果。此外,我们还将辐射级一致性模块引入MISR模型,以保持哨声-2传感器的高辐射分辨率。我们表明MISR优于一系列图像保真度指标的单图像超分辨率和其他基线。此外,我们对建筑描绘的多图像超分辨率的效用进行了第一次评估,显示利用多个图像导致这些下游任务中的更好的性能。
translated by 谷歌翻译
尽管近期基于深度学习的语义细分,但远程感测图像的自动建筑检测仍然是一个具有挑战性的问题,由于全球建筑物的出现巨大变化。误差主要发生在构建足迹的边界,阴影区域,以及检测外表面具有与周围区域非常相似的反射率特性的建筑物。为了克服这些问题,我们提出了一种生成的对抗基于网络的基于网络的分割框架,其具有嵌入在发电机中的不确定性关注单元和改进模块。由边缘和反向关注单元组成的细化模块,旨在精炼预测的建筑地图。边缘注意力增强了边界特征,以估计更高的精度,并且反向关注允许网络探索先前估计区域中缺少的功能。不确定性关注单元有助于网络解决分类中的不确定性。作为我们方法的权力的衡量标准,截至2021年12月4日,它在Deepglobe公共领导板上的第二名,尽管我们的方法的主要重点 - 建筑边缘 - 并不完全对齐用于排行榜排名的指标。 DeepGlobe充满挑战数据集的整体F1分数为0.745。我们还报告了对挑战的Inria验证数据集的最佳成绩,我们的网络实现了81.28%的总体验证,总体准确性为97.03%。沿着同一条线,对于官方Inria测试数据集,我们的网络总体上得分77.86%和96.41%,而且准确性。
translated by 谷歌翻译
高分辨率卫星图像可以为土地覆盖分类提供丰富的详细空间信息,这对于研究复杂的建筑环境尤为重要。但是,由于覆盖范围复杂的覆盖模式,昂贵的训练样品收集以及卫星图像的严重分布变化,很少有研究应用高分辨率图像来大规模详细类别的覆盖地图。为了填补这一空白,我们提出了一个大规模的土地盖数据集,即五亿像素。它包含超过50亿个标记的像素,这些像素由150个高分辨率Gaofen-2(4 M)卫星图像,在24类系统中注释,涵盖人工结构,农业和自然阶层。此外,我们提出了一种基于深度学习的无监督域适应方法,该方法可以转移在标记的数据集(称为源域)上训练的分类模型,以获取大型土地覆盖映射的无标记数据(称为目标域) 。具体而言,我们采用动态伪标签分配和班级平衡策略来介绍一个端到端的暹罗网络,以执行自适应领域联合学习。为了验证我们的数据集的普遍性以及在不同的传感器和不同地理区域中提出的方法,我们对中国的五个大城市和其他五个亚洲国家的五个城市进行了土地覆盖地图,以下情况下使用:Planetscope(3 m),Gaofen-1,Gaofen-1 (8 m)和Sentinel-2(10 m)卫星图像。在总研究区域为60,000平方公里,即使输入图像完全未标记,实验也显示出令人鼓舞的结果。拟议的方法接受了5亿像素数据集的培训,可实现在整个中国和其他亚洲国家的高质量和详细的土地覆盖地图。
translated by 谷歌翻译
语义细分需要在处理大量数据时学习高级特征的方法。卷积神经网络(CNN)可以学习独特和适应性的特征,以实现这一目标。但是,由于遥感图像的大尺寸和高空间分辨率,这些网络无法有效地分析整个场景。最近,Deep Transformers证明了它们能够记录图像中不同对象之间的全局相互作用的能力。在本文中,我们提出了一个新的分割模型,该模型将卷积神经网络与变压器结合在一起,并表明这种局部和全局特征提取技术的混合物在遥感分割中提供了显着优势。此外,提出的模型包括两个融合层,这些融合层旨在有效地表示网络的多模式输入和输出。输入融合层提取物具有总结图像内容与高程图(DSM)之间关系的地图。输出融合层使用一种新型的多任务分割策略,其中使用特定于类的特征提取层和损耗函数来识别类标签。最后,使用快速制定的方法将所有不明的类标签转换为其最接近的邻居。我们的结果表明,与最新技术相比,提出的方法可以提高分割精度。
translated by 谷歌翻译
以知情方式监测和管理地球林是解决生物多样性损失和气候变化等挑战的重要要求。虽然森林评估的传统或空中运动提供了在区域一级分析的准确数据,但将其扩展到整个国家,以外的高度分辨率几乎不可能。在这项工作中,我们提出了一种贝叶斯深度学习方法,以10米的分辨率为全国范围的森林结构变量,使用自由可用的卫星图像作为输入。我们的方法将Sentinel-2光学图像和Sentinel-1合成孔径雷达图像共同变换为五种不同的森林结构变量的地图:95th高度百分位,平均高度,密度,基尼系数和分数盖。我们从挪威的41个机载激光扫描任务中培训和测试我们的模型,并证明它能够概括取消测试区域,从而达到11%和15%之间的归一化平均值误差,具体取决于变量。我们的工作也是第一个提出贝叶斯深度学习方法的工作,以预测具有良好校准的不确定性估计的森林结构变量。这些提高了模型的可信度及其适用于需要可靠的信心估计的下游任务,例如知情决策。我们提出了一组广泛的实验,以验证预测地图的准确性以及预测的不确定性的质量。为了展示可扩展性,我们为五个森林结构变量提供挪威地图。
translated by 谷歌翻译
城市土地覆盖的时间序列数据在分析城市增长模式方面具有很大的效用,不透水表面和植被的分布变化以及对城市微观气候产生影响。虽然Landsat数据非常适于这种分析,但由于长时间系列的免费图像,传统的每像素硬分类未能产生Landsat数据的全部潜力。本文提出了一种子像素分类方法,其利用Landsat-5 TM和Resorational-1 Liss-IV传感器的时间重叠。我们训练卷积神经网络,预测30米Landsat-5 TM数据的分数陆地覆盖。从2011年的Bengaluru的一个艰难的5.8M Liss-IV图像估计参考陆地覆盖分数。此外,我们从2009年使用Mumbai数据并将其与使用的结果进行了概括和卓越的性能随机森林分类器。对于Bengaluru(2011)和Mumbai(2009)数据,我们的CNN模型的平均绝对百分比误差在30M细胞水平上的内置和植被分数预测的7.2至11.3。与最近的最近的研究不同,在使用数据在空间范围进行有限的空间范围进行验证,我们的模型已经过度培训并验证了两个不同时间段的两个Mega城市的完整空间范围的数据。因此,它可以可靠地从Landsat-5 TM时间序列数据中可靠地产生30M内置和植被分数图,以分析长期城市增长模式。
translated by 谷歌翻译