遥感(RS)图像的多标签分类(MLC)的准确方法的开发是RS中最重要的研究主题之一。基于深度卷积神经网络(CNNS)的方法显示了RS MLC问题的强劲性能。然而,基于CNN的方法通常需要多个陆地覆盖类标签注释的大量可靠的训练图像。收集这些数据是耗时和昂贵的。为了解决这个问题,可包括嘈杂标签的公开专题产品可用于向RS零标记成本注释RS图像。但是,多标签噪声(可能与错误且缺少标签注释相关)可以扭曲MLC算法的学习过程。标签噪声的检测和校正是具有挑战性的任务,尤其是在多标签场景中,其中每个图像可以与多于一个标签相关联。为了解决这个问题,我们提出了一种新的噪声稳健协作多标签学习(RCML)方法,以减轻CNN模型训练期间多标签噪声的不利影响。 RCML在基于三个主模块的RS图像中识别,排名和排除噪声多标签:1)差异模块; 2)组套索模块; 3)交换模块。差异模块确保两个网络了解不同的功能,同时产生相同的预测。组套索模块的任务是检测分配给多标记训练图像的潜在嘈杂的标签,而交换模块任务致力于在两个网络之间交换排名信息。与现有的方法不同,我们提出了关于噪声分布的假设,我们所提出的RCML不会在训练集中的噪声类型之前进行任何先前的假设。我们的代码在线公开提供:http://www.noisy-labels-in-rs.org
translated by 谷歌翻译
遥感(RS)图像的多标签分类(MLC)精确方法的开发是RS中最重要的研究主题之一。为了解决MLC问题,发现需要大量可靠的可靠训练图像,该图像由多个土地覆盖级标签(多标签)注释,这些培训图像在Rs中很受欢迎。但是,收集这种注释是耗时且昂贵的。以零标签成本获得注释的常见程序是依靠主题产品或众包标签。作为缺点,这些过程具有标签噪声的风险,可能会扭曲MLC算法的学习过程。在文献中,大多数标签噪声鲁棒方法都是针对计算机视觉(CV)中单标签分类(SLC)问题设计的,其中每个图像都由单个标签注释。与SLC不同,MLC中的标签噪声可以与:1)减去标签 - 噪声(在图像中存在该类时,未分配土地覆盖类标签为图像); 2)添加标签噪声(尽管该类不存在在给定图像中,但将土地覆盖类标签分配给图像); 3)混合标签 - 噪声(两者的组合)。在本文中,我们研究了三种不同的噪声鲁棒CV SLC方法,并将其适应为RS的多标签噪声场景。在实验过程中,我们研究了不同类型的多标签噪声的影响,并严格评估了适用的方法。为此,我们还引入了一种合成的多标签噪声注入策略,该策略与统一标签噪声注入策略相比,该策略更适合模拟操作场景,在该策略中,缺少和当前类的标签以均匀的概率上翻转。此外,我们研究了噪声多标签下不同评估指标在MLC问题中的相关性。
translated by 谷歌翻译
The development of deep learning based image representation learning (IRL) methods has attracted great attention in the context of remote sensing (RS) image understanding. Most of these methods require the availability of a high quantity and quality of annotated training images, which can be time-consuming and costly to gather. To reduce labeling costs, publicly available thematic maps, automatic labeling procedures or crowdsourced data can be used. However, such approaches increase the risk of including label noise in training data. It may result in overfitting on noisy labels when discriminative reasoning is employed as in most of the existing methods. This leads to sub-optimal learning procedures, and thus inaccurate characterization of RS images. In this paper, as a first time in RS, we introduce a generative reasoning integrated label noise robust representation learning (GRID) approach. GRID aims to model the complementary characteristics of discriminative and generative reasoning for IRL under noisy labels. To this end, we first integrate generative reasoning into discriminative reasoning through a variational autoencoder. This allows our approach to automatically detect training samples with noisy labels. Then, through our label noise robust hybrid representation learning strategy, GRID adjusts the whole learning procedure for IRL of these samples through generative reasoning and that of the other samples through discriminative reasoning. Our approach learns discriminative image representations while preventing interference of noisy labels during training independently from the IRL method. Thus, unlike the existing methods, GRID does not depend on the type of annotation, label noise, neural network, loss or learning task, and thus can be utilized for various RS image understanding problems. Experimental results show the effectiveness of GRID compared to state-of-the-art methods.
translated by 谷歌翻译
学习遥感(RS)图像之间的相似性形成基于内容的RS图像检索(CBIR)的基础。最近,将图像的语义相似性映射到嵌入(度量标准)空间的深度度量学习方法已经发现非常流行。学习公制空间的常见方法依赖于将与作为锚称为锚的参考图像的类似(正)和不同(负)图像的三胞胎的选择。选择三胞胎是一个难以为多标签RS CBIR的困难任务,其中每个训练图像由多个类标签注释。为了解决这个问题,在本文中,我们提出了一种在为多标签RS CBIR问题定义的深神经网络(DNN)的框架中提出了一种新颖的三联样品采样方法。该方法基于两个主要步骤选择一小部分最多代表性和信息性三元组。在第一步中,使用迭代算法从当前迷你批量选择在嵌入空间中彼此多样化的一组锚。在第二步中,通过基于新颖的策略评估彼此之间的图像的相关性,硬度和多样性来选择不同的正面和负图像。在两个多标签基准档案上获得的实验结果表明,在DNN的上下文中选择最具信息丰富和代表性的三胞胎,导致:i)降低DNN训练阶段的计算复杂性,而性能没有任何显着损失; ii)由于信息性三元组允许快速收敛,因此学习速度的增加。所提出的方法的代码在https://git.tu-berlin.de/rsim/image-reetrieval-from-tropls上公开使用。
translated by 谷歌翻译
深度学习在大量大数据的帮助下取得了众多域中的显着成功。然而,由于许多真实情景中缺乏高质量标签,数据标签的质量是一个问题。由于嘈杂的标签严重降低了深度神经网络的泛化表现,从嘈杂的标签(强大的培训)学习是在现代深度学习应用中成为一项重要任务。在本调查中,我们首先从监督的学习角度描述了与标签噪声学习的问题。接下来,我们提供62项最先进的培训方法的全面审查,所有这些培训方法都按照其方法论差异分为五个群体,其次是用于评估其优越性的六种性质的系统比较。随后,我们对噪声速率估计进行深入分析,并总结了通常使用的评估方法,包括公共噪声数据集和评估度量。最后,我们提出了几个有前途的研究方向,可以作为未来研究的指导。所有内容将在https://github.com/songhwanjun/awesome-noisy-labels提供。
translated by 谷歌翻译
The use of deep neural networks (DNNs) has recently attracted great attention in the framework of the multi-label classification (MLC) of remote sensing (RS) images. To optimize the large number of parameters of DNNs a high number of reliable training images annotated with multi-labels is often required. However, the collection of a large training set is time-consuming, complex and costly. To minimize annotation efforts for data-demanding DNNs, in this paper we present several query functions for active learning (AL) in the context of DNNs for the MLC of RS images. Unlike the AL query functions defined for single-label classification or semantic segmentation problems, each query function presented in this paper is based on the evaluation of two criteria: i) multi-label uncertainty; and ii) multi-label diversity. The multi-label uncertainty criterion is associated to the confidence of the DNNs in correctly assigning multi-labels to each image. To assess the multi-label uncertainty, we present and adapt to the MLC problems three strategies: i) learning multi-label loss ordering; ii) measuring temporal discrepancy of multi-label prediction; and iii) measuring magnitude of approximated gradient embedding. The multi-label diversity criterion aims at selecting a set of uncertain images that are as diverse as possible to reduce the redundancy among them. To assess this criterion we exploit a clustering based strategy. We combine each of the above-mentioned uncertainty strategy with the clustering based diversity strategy, resulting in three different query functions. Experimental results obtained on two benchmark archives show that our query functions result in the selection of a highly informative set of samples at each iteration of the AL process in the context of MLC.
translated by 谷歌翻译
哥内克人Sentinel Imagery的纯粹卷的可用性为使用深度学习的大尺度创造了新的土地利用陆地覆盖(Lulc)映射的机会。虽然在这种大型数据集上培训是一个非琐碎的任务。在这项工作中,我们试验Lulc Image分类和基准不同最先进模型的Bigearthnet数据集,包括卷积神经网络,多层感知,视觉变压器,高效导通和宽残余网络(WRN)架构。我们的目标是利用分类准确性,培训时间和推理率。我们提出了一种基于用于网络深度,宽度和输入数据分辨率的WRNS复合缩放的高效导通的框架,以有效地训练和测试不同的模型设置。我们设计一种新颖的缩放WRN架构,增强了有效的通道注意力机制。我们提出的轻量级模型具有较小的培训参数,实现所有19个LULC类的平均F分类准确度达到4.5%,并且验证了我们使用的resnet50最先进的模型速度快两倍作为基线。我们提供超过50种培训的型号,以及我们在多个GPU节点上分布式培训的代码。
translated by 谷歌翻译
应付嘈杂标签的大多数现有方法通常假定类别分布良好,因此无法应对训练样本不平衡分布的实际情况的能力不足。为此,本文尽早努力通过长尾分配和标签噪声来解决图像分类任务。在这种情况下,现有的噪声学习方法无法正常工作,因为将噪声样本与干净的尾巴类别的样本区分开来是具有挑战性的。为了解决这个问题,我们提出了一个新的学习范式,基于对弱数据和强数据扩展的推论,以筛选嘈杂的样本,并引入休假散布的正则化,以消除公认的嘈杂样本的效果。此外,我们基于在线先验分布中纳入了一种新颖的预测惩罚,以避免对头等阶层的偏见。与现有的长尾分类方法相比,这种机制在实时捕获班级拟合度方面具有优越性。详尽的实验表明,所提出的方法优于解决噪声标签下长尾分类中分布不平衡问题的最先进算法。
translated by 谷歌翻译
Large-scale supervised datasets are crucial to train convolutional neural networks (CNNs) for various computer vision problems. However, obtaining a massive amount of well-labeled data is usually very expensive and time consuming. In this paper, we introduce a general framework to train CNNs with only a limited number of clean labels and millions of easily obtained noisy labels. We model the relationships between images, class labels and label noises with a probabilistic graphical model and further integrate it into an end-to-end deep learning system. To demonstrate the effectiveness of our approach, we collect a large-scale real-world clothing classification dataset with both noisy and clean labels. Experiments on this dataset indicate that our approach can better correct the noisy labels and improves the performance of trained CNNs.
translated by 谷歌翻译
语义分割在广泛的计算机视觉应用中起着基本作用,提供了全球对图像​​的理解的关键信息。然而,最先进的模型依赖于大量的注释样本,其比在诸如图像分类的任务中获得更昂贵的昂贵的样本。由于未标记的数据替代地获得更便宜,因此无监督的域适应达到了语义分割社区的广泛成功并不令人惊讶。本调查致力于总结这一令人难以置信的快速增长的领域的五年,这包含了语义细分本身的重要性,以及将分段模型适应新环境的关键需求。我们提出了最重要的语义分割方法;我们对语义分割的域适应技术提供了全面的调查;我们揭示了多域学习,域泛化,测试时间适应或无源域适应等较新的趋势;我们通过描述在语义细分研究中最广泛使用的数据集和基准测试来结束本调查。我们希望本调查将在学术界和工业中提供具有全面参考指导的研究人员,并有助于他们培养现场的新研究方向。
translated by 谷歌翻译
Image classification with small datasets has been an active research area in the recent past. However, as research in this scope is still in its infancy, two key ingredients are missing for ensuring reliable and truthful progress: a systematic and extensive overview of the state of the art, and a common benchmark to allow for objective comparisons between published methods. This article addresses both issues. First, we systematically organize and connect past studies to consolidate a community that is currently fragmented and scattered. Second, we propose a common benchmark that allows for an objective comparison of approaches. It consists of five datasets spanning various domains (e.g., natural images, medical imagery, satellite data) and data types (RGB, grayscale, multispectral). We use this benchmark to re-evaluate the standard cross-entropy baseline and ten existing methods published between 2017 and 2021 at renowned venues. Surprisingly, we find that thorough hyper-parameter tuning on held-out validation data results in a highly competitive baseline and highlights a stunted growth of performance over the years. Indeed, only a single specialized method dating back to 2019 clearly wins our benchmark and outperforms the baseline classifier.
translated by 谷歌翻译
来自X射线图像的近端股骨骨折的足够分类对于治疗选择和患者的临床结果至关重要。我们依赖于常用的AO系统,该系统描述了将图像分类为类型和亚型的分层知识树根据裂缝的位置和复杂性。在本文中,我们提出了一种基于卷积神经网络(CNN)自动分类近端股骨骨折的近端骨折分类为3和7 AO类。如已知所知,CNNS需要具有可靠标签的大型和代表性数据集,这很难收集手头的应用。在本文中,我们设计了一个课程学习(CL)方法,在这种情况下通过基本的CNNS性能提高。我们的小说配方团结了三个课程策略:单独加权培训样本,重新排序培训集,以及数据采样子集。这些策略的核心是评分函数排名训练样本。我们定义了两种小说评分函数:一个来自域的特定于域的先前知识和原始的自我节奏的不确定性分数。我们对近端股骨射线照片的临床数据集进行实验。课程改善了近端股骨骨折分类,达到了经验丰富的创伤外科医生的性能。最佳课程方法根据现有知识重新排列培训集,从而达到15%的分类提高。使用公开可用的MNIST DataSet,我们进一步讨论并展示了我们统一的CL配方对三个受控和具有挑战性的数字识别方案的好处:具有有限的数据,在类别 - 不平衡下以及在标签噪声存在下。我们的工作代码可在:https://github.com/ameliajimenez/curriculum-learning-prior -unctainty。
translated by 谷歌翻译
Label noise is an important issue in classification, with many potential negative consequences. For example, the accuracy of predictions may decrease, whereas the complexity of inferred models and the number of necessary training samples may increase. Many works in the literature have been devoted to the study of label noise and the development of techniques to deal with label noise. However, the field lacks a comprehensive survey on the different types of label noise, their consequences and the algorithms that consider label noise. This paper proposes to fill this gap. First, the definitions and sources of label noise are considered and a taxonomy of the types of label noise is proposed. Second, the potential consequences of label noise are discussed. Third, label noise-robust, label noise cleansing, and label noise-tolerant algorithms are reviewed. For each category of approaches, a short discussion is proposed to help the practitioner to choose the most suitable technique in its own particular field of application. Eventually, the design of experiments is also discussed, what may interest the researchers who would like to test their own algorithms. In this paper, label noise consists of mislabeled instances: no additional information is assumed to be available like e.g. confidences on labels.
translated by 谷歌翻译
Deep Neural Networks (DNNs) have been shown to be susceptible to memorization or overfitting in the presence of noisily-labelled data. For the problem of robust learning under such noisy data, several algorithms have been proposed. A prominent class of algorithms rely on sample selection strategies wherein, essentially, a fraction of samples with loss values below a certain threshold are selected for training. These algorithms are sensitive to such thresholds, and it is difficult to fix or learn these thresholds. Often, these algorithms also require information such as label noise rates which are typically unavailable in practice. In this paper, we propose an adaptive sample selection strategy that relies only on batch statistics of a given mini-batch to provide robustness against label noise. The algorithm does not have any additional hyperparameters for sample selection, does not need any information on noise rates and does not need access to separate data with clean labels. We empirically demonstrate the effectiveness of our algorithm on benchmark datasets.
translated by 谷歌翻译
目的:深度神经网络(DNN)已被广泛应用于医学图像分类中,从其在医学图像中的强大映射能力中受益。但是,这些现有的基于深度学习的方法取决于大量精心标记的图像。同时,标记过程中不可避免地引入噪声,从而降低了模型的性能。因此,制定强大的培训策略以减轻医学图像分类任务中的标签噪声是很重要的。方法:在这项工作中,我们提出了一种新颖的贝叶斯统计数据指导标签翻新机制(BLRM),以防止过度适合嘈杂的图像。 BLRM利用贝叶斯统计数据和指定时间加权技术中的最大后验概率(MAP)来选择性地纠正嘈杂图像的标签。激活BLRM时,训练时期逐渐纯化训练图像,从而进一步改善分类性能。结果:关于合成噪声图像(公共OCT和Messidor数据集)和现实世界嘈杂图像(Animal-10N)的全面实验表明,BLRM选择性地翻新了噪声标签,从而凝结了噪声数据的不良影响。同样,与DNN集成的抗噪声BLRM在不同的噪声比下有效,并且独立于骨干DNN架构。此外,BLRM优于抗噪声的最新比较方法。结论:这些研究表明,所提出的BLRM能够缓解医学图像分类任务中的标签噪声。
translated by 谷歌翻译
最近关于使用嘈杂标签的学习的研究通过利用小型干净数据集来显示出色的性能。特别是,基于模型不可知的元学习的标签校正方法进一步提高了性能,通过纠正了嘈杂的标签。但是,标签错误矫予没有保障措施,导致不可避免的性能下降。此外,每个训练步骤都需要至少三个背部传播,显着减慢训练速度。为了缓解这些问题,我们提出了一种强大而有效的方法,可以在飞行中学习标签转换矩阵。采用转换矩阵使分类器对所有校正样本持怀疑态度,这减轻了错误的错误问题。我们还介绍了一个双头架构,以便在单个反向传播中有效地估计标签转换矩阵,使得估计的矩阵紧密地遵循由标签校正引起的移位噪声分布。广泛的实验表明,我们的方法在训练效率方面表现出比现有方法相当或更好的准确性。
translated by 谷歌翻译
基于深度学习的组织病理学图像分类是帮助医生提高癌症诊断的准确性和迅速性的关键技术。然而,在复杂的手动注释过程中,嘈杂的标签通常是不可避免的,因此误导了分类模型的培训。在这项工作中,我们介绍了一种用于组织病理学图像分类的新型硬样本感知噪声稳健学习方法。为了区分来自有害嘈杂的内容漏洞,我们通过使用样本培训历史来构建一个简单/硬/噪声(EHN)检测模型。然后,我们将EHN集成到自动训练架构中,通过逐渐校正降低噪声速率。通过获得的几乎干净的数据集,我们进一步提出了一种噪声抑制和硬增强(NSHE)方案来训练噪声鲁棒模型。与以前的作品相比,我们的方法可以节省更多清洁样本,并且可以直接应用于实际嘈杂的数据集场景,而无需使用清洁子集。实验结果表明,该方案在合成和现实世界嘈杂的数据集中优于当前最先进的方法。源代码和数据可在https://github.com/bupt-ai-cz/hsa-nrl/处获得。
translated by 谷歌翻译
现实世界的面部表达识别(FER)数据集遭受吵闹的注释,由于众包,表达式的歧义,注释者的主观性和类间的相似性。但是,最近的深层网络具有强大的能力,可以记住嘈杂的注释导致腐蚀功能嵌入和泛化不良的能力。为了处理嘈杂的注释,我们提出了一个动态FER学习框架(DNFER),其中根据训练过程中的动态类特定阈值选择了干净的样品。具体而言,DNFER基于使用选定的干净样品和使用所有样品的无监督培训的监督培训。在训练过程中,每个微型批次的平均后类概率被用作动态类特异性阈值,以选择干净的样品进行监督训练。该阈值与噪声率无关,与其他方法不同,不需要任何干净的数据。此外,要从所有样品中学习,使用无监督的一致性损失对齐弱调节图像和强大图像之间的后验分布。我们证明了DNFER在合成和实际噪声注释的FER数据集(如RaFDB,Ferplus,Sfew和altimpnet)上的鲁棒性。
translated by 谷歌翻译
我们提出“ AITLAS:基准竞技场” - 一个开源基准测试框架,用于评估地球观察中图像分类的最新深度学习方法(EO)。为此,我们介绍了从九种不同的最先进的体系结构得出的400多个模型的全面比较分析,并将它们与来自22个具有不同尺寸的数据集的各种多级和多标签分类任务进行比较和属性。除了完全在这些数据集上训练的模型外,我们还基于在转移学习的背景下训练的模型,利用预训练的模型变体,因为通常在实践中执行。所有提出的方法都是一般的,可以轻松地扩展到本研究中未考虑的许多其他遥感图像分类任务。为了确保可重复性并促进更好的可用性和进一步的开发,所有实验资源在内的所有实验资源,包括训练的模型,模型配置和数据集的处理详细信息(以及用于培训和评估模型的相应拆分)都在存储库上公开可用:HTTPS ://github.com/biasvariancelabs/aitlas-arena。
translated by 谷歌翻译
深度学习算法在非常高分辨率(VHR)图像的语义分割方面取得了巨大成功。然而,培训这些模型通常需要大量准确的像素注释,这非常费力且耗时。为了减轻注释负担,本文提出了一个一致性调节的区域生长网络(CRGNET),以实现具有点级注释的VHR图像的语义分割。 CRGNET的关键思想是迭代选择未标记的像素,具有很高的信心,可以从原始稀疏点扩展带注释的区域。但是,由于扩展的注释中可能存在一些错误和噪音,因此直接向它们学习可能会误导网络的培训。为此,我们进一步提出了一致性正则化策略,在该策略中,基本分类器和扩展的分类器被采用。具体而言,基本分类器受原始稀疏注释的监督,而扩展的分类器的目的是从基本分类器生成的扩展注释中学习具有区域生长机制。因此,通过最大程度地减少基础和扩展分类器的预测之间的差异来实现一致性正则化。我们发现如此简单的正则化策略对于控制区域生长机制的质量非常有用。在两个基准数据集上进行的广泛实验表明,所提出的CRGNET显着优于现有的最新方法。代码和预培训模型可在线获得(https://github.com/yonghaoxu/crgnet)。
translated by 谷歌翻译