在点击率(CTR)预测方案中,用户的顺序行为很好地利用来捕获最近文献中的用户兴趣。然而,尽管正在广泛研究,但这些顺序方法仍然存在三个限制。首先,现有方法主要利用对用户行为的注意,这并不总是适用于CTR预测,因为用户经常点击与任何历史行为无关的新产品。其次,在真实场景中,很久以前存在许多具有运营的用户,但最近的次数相对不活跃。因此,难以通过早期行为精确地捕获用户的当前偏好。第三,不同特征子空间中用户历史行为的多个表示主要被忽略。为了解决这些问题,我们提出了一种多互动关注网络(Mian),全面提取各种细粒度特征之间的潜在关系(例如,性别,年龄和用户档案)。具体而言,MIAN包含多交互式层(MIL),其集成了三个本地交互模块,通过顺序行为捕获用户偏好的多个表示,并同时利用细粒度的用户特定的以及上下文信息。此外,我们设计了一个全局交互模块(GIM)来学习高阶交互,平衡多个功能的不同影响。最后,脱机实验结果来自三个数据集,以及在大型推荐系统中的在线A / B测试,展示了我们提出的方法的有效性。
translated by 谷歌翻译
在本文中,我们考虑点击率(CTR)预测问题。因子化机器及其变体考虑配对特征交互,但通常我们不会由于高时间复杂度而使用FM进行高阶功能交互。鉴于许多领域的深度神经网络(DNN)的成功,研究人员提出了几种基于DNN的模型来学习高阶功能交互。已广泛用于从功能嵌入到最终登录的功能嵌入的可靠映射,从而广泛使用多层。在本文中,我们的目标是更多地探索这些高阶功能的交互。然而,高阶特征互动值得更加关注和进一步发展。灵感来自计算机愿景中密集连接的卷积网络(DENSENET)的巨大成就,我们提出了一种新颖的模型,称为殷勤基于DENENET的分解机(ADNFM)。 ADNFM可以通过使用前馈神经网络的所有隐藏层作为隐式的高阶功能来提取更全面的深度功能,然后通过注意机制选择主导特征。此外,使用DNN的隐式方式的高阶交互比以明确的方式更具成本效益,例如在FM中。两个真实数据集的广泛实验表明,所提出的模型可以有效地提高CTR预测的性能。
translated by 谷歌翻译
最近,深度学习模型已在工业推荐系统中广泛传播,并提高了建议质量。尽管取得了杰出的成功,但任务吸引推荐系统的设计通常需要域专家的手动功能工程和建筑工程。为了减轻人类的努力,我们探索了神经体系结构搜索(NAS)的潜力,并在推荐系统中引入了自动行为建模,互动探索和多层感知器(MLP)研究的AMEIR。 Ameir的核心贡献是三阶段的搜索空间和量身定制的三步搜索管道。具体而言,Ameir将完整的建议模型分为行为建模,交互探索,MLP聚合的三个阶段,并引入了一个新颖的搜索空间,其中包含三个量身定制的子空间,这些子空间涵盖了大多数现有方法,从而允许搜索更好的模型。为了有效,有效地找到理想的体系结构,Ameir在三个阶段逐渐推荐中实现了一次弹奏随机搜索,并将搜索结果组装为最终结果。进一步的分析表明,Ameir的搜索空间可以涵盖大多数代表性推荐模型,这证明了我们设计的普遍性。在各种情况下进行的广泛实验表明,AMEIR的表现优于精心制作的手动设计的竞争基准和领先的算法复杂的NAS方法,具有较低的模型复杂性和可比的时间成本,表明所提出的方法的效率,效率和鲁棒性。
translated by 谷歌翻译
学习捕获特征关系有效,有效地是现代推荐系统的点击率(CTR)预测的必要条件。大多数现有的CTR预测方法通过繁琐的手动设计的低阶交互或通过不灵活和低效的高阶交互来模型这样的关系,这两者都需要额外的DNN模块进行隐式交互建模。在本文中,我们提出了一种新颖的插件操作,动态参数化操作(DPO),以便明智地学习显式和隐式交互实例。我们认为DPO进入DNN模块和注意力模块可以分别有利于CTR预测中的两个主要任务,增强了基于特征的建模和改进用户行为建模的适应性与实例 - 方向性。我们的动态参数化网络在公共数据集和现实世界生产数据集的离线实验中显着优于最先进的方法,以及在线A / B测试。此外,建议的动态参数化网络已经在世界上最大的电子商务公司之一的排名系统中部署,服务于数亿个活跃用户的主要流量。
translated by 谷歌翻译
特征交互已被识别为机器学习中的一个重要问题,这对于点击率(CTR)预测任务也是非常重要的。近年来,深度神经网络(DNN)可以自动从原始稀疏功能中学习隐式非线性交互,因此已广泛用于工业CTR预测任务。然而,在DNN中学到的隐式特征交互不能完全保留原始和经验特征交互的完整表示容量(例如,笛卡尔产品)而不会损失。例如,简单地尝试学习特征A和特征B <A,B>作为新特征的显式笛卡尔产品表示可以胜过先前隐式功能交互模型,包括基于分解机(FM)的模型及其变体。在本文中,我们提出了一个共同行动网络(CAN),以近似于显式成对特征交互,而不会引入太多的附加参数。更具体地,给出特征A及其相关的特征B,通过学习两组参数来建模它们的特征交互:1)嵌入特征A和2)以表示特征B的多层Perceptron(MLP)。近似通过通过特征B的MLP网络传递特征A的嵌入可以获得特征交互。我们将这种成对特征交互作为特征合作,并且这种共动网单元可以提供拟合复合物的非常强大的容量功能交互。公共和工业数据集的实验结果表明,可以优于最先进的CTR模型和笛卡尔产品方法。此外,可以在阿里巴巴的显示广告系统中部署,获得12 \%的CTR和8 \%关于每个Mille(RPM)的收入,这是对业务的巨大改进。
translated by 谷歌翻译
促销活动在电子商务平台上变得更加重要和普遍,以吸引客户和提升销售。但是,推荐系统中的点击率(CTR)预测方法无法处理此类情况,因为:1)他们无法概括为服务,因为在线数据分布是不确定的,因为可能正在推出的促销潜在的促销; 2)在不够重视方案信号的情况下,它们无法学习在每个场景中共存的不同特征表示模式。在这项工作中,我们提出了方案自适应混合的专家(相同),这是一个简单而有效的模型,用于促销和正常情况。从技术上讲,它通过采用多个专家来学习专家来遵循专家混合的想法,这些特征表示通过注意机制通过特征门控网络(FGN)进行调制。为了获得高质量的表示,我们设计了一个堆叠的并行关注单元(SPAU),以帮助每个专家更好地处理用户行为序列。为了解决分布不确定性,从时间序列预测的角度精确地设计了一组场景信号,并馈入FGN,其输出与来自每个专家的特征表示连接,以学会注意。因此,特征表示的混合是自适应的场景和用于最终的CTR预测。通过这种方式,每个专家都可以学习鉴别的表示模式。据我们所知,这是第一次推广感知CTR预测的研究。实验结果对现实世界数据集验证了同一的优势。在线A / B测试也表现出同样的促销期间在CTR上的显着增益和5.94%的IPV,分别在正常日内为3.93%和6.57%。
translated by 谷歌翻译
点击率(CTR)预测旨在估算用户单击项目的可能性,是在线广告的重要组成部分。现有方法主要尝试从用户的历史行为中挖掘用户兴趣,这些行为包含用户直接交互的项目。尽管这些方法取得了长足的进步,但通常会受到推荐系统的直接曝光和不活动相互作用的限制,因此无法挖掘所有潜在的用户利益。为了解决这些问题,我们提出了基于邻居相互作用的CTR预测(NI-CTR),该预测在异质信息网络(HIN)设置下考虑此任务。简而言之,基于邻居相互作用的CTR预测涉及HIN目标用户项目对的本地邻域以预测其链接。为了指导当地社区的表示形式,我们从显式和隐性的角度考虑了本地邻里节点之间的不同类型的相互作用,并提出了一种新颖的图形掩盖变压器(GMT),以有效地将这些类型的交互结合到为目标用户项目对生成高度代表性的嵌入。此外,为了提高针对邻居采样的模型鲁棒性,我们在嵌入邻里的嵌入式上执行了一致性正规化损失。我们对数百万个实例进行了两个现实世界数据集进行了广泛的实验,实验结果表明,我们所提出的方法的表现明显优于最先进的CTR模型。同时,全面的消融研究验证了我们模型每个组成部分的有效性。此外,我们已经在具有数十亿用户的微信官方帐户平台上部署了此框架。在线A/B测试表明,针对所有在线基线的平均CTR改进为21.9。
translated by 谷歌翻译
在大数据时代,推荐系统在我们日常生活中的关键信息过滤表现出了杰出的成功。近年来,推荐系统的技术发展,从感知学习到认知推理,这些认知推理将推荐任务作为逻辑推理的过程,并取得了重大改进。但是,推理中的逻辑陈述隐含地承认有序无关紧要,甚至没有考虑在许多建议任务中起重要作用的时间信息。此外,与时间上下文合并的建议模型往往是自我集中的,即自动更加(少)将相关性(不相关)分别集中在相关性上。为了解决这些问题,在本文中,我们提出了一种基于神经协作推理(TISANCR)的推荐模型的时间感知自我注意力,该模型将时间模式和自我注意机制集成到基于推理的建议中。特别是,以相对时间为代表的时间模式,提供上下文和辅助信息来表征用户在建议方面的偏好,而自我注意力则是利用自我注意力来提炼信息的模式并抑制无关紧要的。因此,自我煽动的时间信息的融合提供了对用户偏好的更深入表示。基准数据集的广泛实验表明,所提出的Tisancr取得了重大改进,并始终优于最先进的建议方法。
translated by 谷歌翻译
点击率(CTR)预测的目标是预测用户单击项目的可能性,在推荐系统中变得越来越重要。最近,一些具有自动从他/她的行为中提取用户兴趣的深度学习模型取得了巨大的成功。在这些工作中,注意机制用于选择用户在历史行为中感兴趣的项目,从而提高CTR预测指标的性能。通常,这些细心的模块可以通过使用梯度下降与基本预测变量共同训练。在本文中,我们将用户兴趣建模视为特征选择问题,我们称之为用户兴趣选择。对于这样一个问题,我们在包装法的框架下提出了一种新颖的方法,该方法被称为Meta-wrapper。更具体地说,我们使用可区分的模块作为包装运算符,然后将其学习问题重新提出为连续的二元优化。此外,我们使用元学习算法来求解优化并理论上证明其收敛性。同时,我们还提供了理论分析,以表明我们提出的方法1)效率基于包装器的特征选择,而2)可以更好地抵抗过度拟合。最后,在三个公共数据集上进行的广泛实验表明了我们方法在提高CTR预测的性能方面的优势。
translated by 谷歌翻译
Learning feature interactions is the key to success for the large-scale CTR prediction and recommendation. In practice, handcrafted feature engineering usually requires exhaustive searching. In order to reduce the high cost of human efforts in feature engineering, researchers propose several deep neural networks (DNN)-based approaches to learn the feature interactions in an end-to-end fashion. However, existing methods either do not learn both vector-wise interactions and bit-wise interactions simultaneously, or fail to combine them in a controllable manner. In this paper, we propose a new model, xDeepInt, based on a novel network architecture called polynomial interaction network (PIN) which learns higher-order vector-wise interactions recursively. By integrating subspace-crossing mechanism, we enable xDeepInt to balance the mixture of vector-wise and bit-wise feature interactions at a bounded order. Based on the network architecture, we customize a combined optimization strategy to conduct feature selection and interaction selection. We implement the proposed model and evaluate the model performance on three real-world datasets. Our experiment results demonstrate the efficacy and effectiveness of xDeepInt over state-of-the-art models. We open-source the TensorFlow implementation of xDeepInt: https://github.com/yanyachen/xDeepInt.
translated by 谷歌翻译
在大多数现实世界中的推荐方案中,多种行为(例如,单击,添加到购物车,采购等)的多类型,这对于学习用户的多方面偏好是有益的。由于多种类型的行为明确表现出依赖性,因此有效地对复杂行为依赖性建模对于多行为预测至关重要。最先进的多行为模型以所有历史互动为输入都没有区别地学习行为依赖性。但是,不同的行为可能反映了用户偏好的不同方面,这意味着某些无关的互动可能会像预测目标行为的声音一样发挥作用。为了解决上述局限性,我们向多行为建议介绍了多功能学习。更具体地说,我们提出了一种新颖的粗到五个知识增强的多功能学习(CKML)框架,以学习不同行为的共享和特定于行为的利益。 CKML引入了两个高级模块,即粗粒兴趣提取(CIE)和细粒度的行为相关性(FBC),它们共同起作用以捕获细粒度的行为依赖性。 CIE使用知识感知信息来提取每个兴趣的初始表示。 FBC结合了动态路由方案,以在兴趣之间进一步分配每个行为。此外,我们使用自我注意机制在兴趣水平上将不同的行为信息相关联。三个现实世界数据集的经验结果验证了我们模型在利用多行为数据方面的有效性和效率。进一步的实验证明了每个模块的有效性以及多行为数据共享和特定建模范式的鲁棒性和优越性。
translated by 谷歌翻译
预测用户肯定响应(例如,购买和点击)概率是Web应用程序中的关键任务。为了识别原始数据的预测特征,最先进的极端深层分解机模型(XDEEPFM)引入了新的交互网络,以明确地利用矢量方面的特征交互。然而,由于交互网络中的每个隐藏层是特征映射的集合,因此它可以基本上作为不同特征映射的集合来观看。在这种情况下,仅使用单个目标来最小化预测损失可能导致过度拟合并产生相关的错误。在本文中,提出了一种集合分集增强的极端深度分解机模型(DEXDEEPFM),其设计了每个隐藏层中的集合多样性度量,并在客观函数中考虑集合多样性和预测精度。此外,还引入了注意机制,以区分集合多样性措施与不同的特征互动令的重要性。对三次公共实时数据集进行了广泛的实验,以展示所提出的模型的有效性。
translated by 谷歌翻译
用户嵌入(用户的矢量化表示)对于推荐系统至关重要。已经提出了许多方法来为用户构建代表性,以找到用于检索任务的类似项目,并且已被证明在工业推荐系统中也有效。最近,人们发现使用多个嵌入式代表用户的能力,希望每个嵌入代表用户对某个主题的兴趣。通过多息表示,重要的是要对用户对不同主题的喜好进行建模以及偏好如何随时间变化。但是,现有方法要么无法估算用户对每个利息的亲和力,要么不合理地假设每个用户的每一个利息随时间而逐渐消失,从而损害了候选人检索的召回。在本文中,我们提出了多功能偏好(MIP)模型,这种方法不仅可以通过更有效地使用用户的顺序参与来为用户产生多种利益因此,可以按比例地从每个利息中检索候选人。在各种工业规模的数据集上进行了广泛的实验,以证明我们方法的有效性。
translated by 谷歌翻译
作为在线广告和标记的关键组成部分,点击率(CTR)预测引起了行业和学术界领域的许多关注。最近,深度学习已成为CTR的主流方法论。尽管做出了可持续的努力,但现有的方法仍然构成了一些挑战。一方面,功能之间的高阶相互作用尚未探索。另一方面,高阶相互作用可能会忽略低阶字段的语义信息。在本文中,我们提出了一种名为Fint的新型预测方法,该方法采用了现场感知的交互层,该层捕获了高阶功能交互,同时保留了低阶现场信息。为了凭经验研究金融的有效性和鲁棒性,我们对三个现实数据库进行了广泛的实验:KDD2012,Criteo和Avazu。获得的结果表明,与现有方法相比,该五颗粒可以显着提高性能,而无需增加所需的计算量。此外,提出的方法通过A/B测试使大型在线视频应用程序的广告收入增加了约2.72 \%。为了更好地促进CTR领域的研究,我们发布了我们的代码以及参考实施,网址为:https://github.com/zhishan01/fint。
translated by 谷歌翻译
对于许多在线平台(例如,视频共享网站,电子商务系统),学习动态用户的偏好已成为越来越重要的组成部分,以提出顺序建议。先前的工作已经做出了许多努力,以基于各种体系结构(例如,经常性的神经网络和自我注意机制)对用户交互序列进行建模项目项目过渡。最近出现的图形神经网络还用作有用的骨干模型,可在顺序推荐方案中捕获项目依赖性。尽管它们有效,但现有的方法却远远集中在具有单一相互作用类型的项目序列表示上,因此仅限于捕获用户和项目之间的动态异质关系结构(例如,页面视图,添加最佳选择,购买,购买)。为了应对这一挑战,我们设计了多行为超毛力增强的变压器框架(MBHT),以捕获短期和长期跨型行为依赖性。具体而言,多尺度变压器配备了低级别的自我注意力,可从细粒度和粗粒水平的共同编码行为感知的顺序模式。此外,我们将全局多行为依赖性纳入HyperGraph神经体系结构中,以自定义的方式捕获层次长期项目相关性。实验结果证明了我们MBHT在不同环境中的各种最新推荐解决方案的优势。进一步的消融研究证明了我们的模型设计和新MBHT框架的好处的有效性。我们的实施代码在以下网址发布:https://github.com/yuh-yang/mbht-kdd22。
translated by 谷歌翻译
由于知识图表提供的丰富信息,基于路径的可解释的推荐系统的最新进展引起了更大的关注。最现有的可解释的建议仅利用静态知识图表并忽略动态用户项演进,导致不太令人信服和不准确的解释。虽然有一些作品,但意识到建模用户的时间顺序行为可以提高推荐器系统的性能和解释性,其中大多数只关注用户在路径内的顺序交互或独立和单独的推荐机制。在本文中,我们提出了一种新颖的时间元路径指导可解释的推荐利用加强学习(TMER-RL),它利用了连续项目之间的加强项 - 项目路径建模,其注意机制在动态知识图上顺序模拟动态用户项演进用于解释的建议。与使用繁重的经常性神经网络模拟时间信息的现有作品相比,我们提出了简单但有效的神经网络,以捕获用户的历史项目功能和基于路径的上下文,以表征下一个购买的项目。与最近的强大基线相比,两个真实数据集的TMMER广泛评估显示了最先进的表现。
translated by 谷歌翻译
预测短期交互会话的下一个交互是基于会话的推荐中的一个具有挑战性的任务。几乎所有现有的作品都依赖于项目转换模式,并在建模用户偏好时忽略用户历史会话的影响,这通常会导致非个性化推荐。此外,基于现有的个性化会话的推荐人仅基于当前用户的会话捕获用户首选项,而是忽略来自其他用户的历史会话的有用物品转换模式。为了解决这些问题,我们提出了一种新颖的异构全球图形神经网络(HG-GNN)以以微妙的方式利用所有会话的物品过渡,以便更好地推断用户偏好与当前和历史会话。为了有效利用所有用户的所有会话转换,我们提出了一种新的异构全局图,该图包含会话,用户项交互和全局共同发生项目的项目转换。此外,为了综合地从会话中捕获用户偏好,我们建议通过两个图形增强偏好编码器学习来自全局图的两个用户表示。具体地,我们在异构全球图上设计一种新的异构图形神经网络(HGNN),以了解具有丰富语义的长期用户偏好和项目表示。基于HGNN,我们提出了当前偏好编码器和历史偏好编码器,分别捕获来自当前和历史会话的不同级别的用户偏好。为实现个性化建议,我们将用户当前偏好和历史利益的表示集成到生成最终用户首选项表示。三个真实数据集的广泛实验结果表明,我们的模型优于其他最先进的方法。
translated by 谷歌翻译
因子化机器(FM)是在处理高维稀疏数据时建模成对(二阶)特征交互的普遍存在方法。然而,一方面,FM无法捕获患有组合扩展的高阶特征相互作用,另一方面,考虑每对特征之间的相互作用可能引入噪声和降低预测精度。为了解决问题,我们通过在图形结构中自然表示特征来提出一种新颖的方法图形因子分子机器(GraphFM)。特别地,设计了一种新颖的机制来选择有益特征相互作用,并将它们装配为特征之间的边缘。然后我们所提出的模型将FM的交互功能集成到图形神经网络(GNN)的特征聚合策略中,可以通过堆叠图层模拟图形结构特征上的任意顺序特征交互。关于若干现实世界数据集的实验结果表明了我们提出的方法的合理性和有效性。
translated by 谷歌翻译
基于历史行为数据的行为预测具有实际的现实意义。它已在推荐,预测学习成绩等中应用。随着用户数据描述的完善,新功能的发展以及多个数据源的融合,包含多种行为的异质行为数据变得越来越普遍。在本文中,我们旨在纳入行为预测的异质用户行为和社会影响。为此,本文提出了一个长期术语内存(LSTM)的变体,该变体可以在对行为序列进行建模时考虑上下文信息,该投影机制可以模拟不同类型的行为之间的多方面关系以及多方面的多方面关系注意机制可以动态地从不同的方面找到信息。许多行为数据属于时空数据。提出了一种基于时空数据并建模社会影响力的社交行为图的无监督方法。此外,基于剩余的基于学习的解码器旨在根据社会行为表示和其他类型的行为表示自动构建多个高阶交叉特征。对现实世界数据集的定性和定量实验已经证明了该模型的有效性。
translated by 谷歌翻译
新闻建议是现代社会中有效的信息传播解决方案。虽然近年来已经见证了许多有前途的新闻推荐模型,但它们主要以静态方式捕获文件级上的用户新交互。然而,在现实世界的情景中,新闻可以很复杂和多样化,盲目地将所有内容挤压到嵌入式矢量中,在提取与用户的个性化偏好兼容的信息中可以不太有效。此外,新闻推荐方案中的用户偏好可以是高度动态的,并且应该设计定制的动态机制以获得更好的推荐性能。在本文中,我们提出了一种新颖的动态新闻推荐模型。为了更好地理解新闻内容,我们利用注意机制分别代表了从句子,元素和文档级别的消息。为了捕获用户的动态偏好,连续时间信息无缝地结合到关注权重的计算中。更具体地,我们设计了一个分层关注网络,其中下层学习不同句子和元素的重要性,并且上层捕获先前互动和目标新闻之间的相关性。为了全面模型动态字符,我们首先通过结合绝对和相对时间信息来增强传统的关注机制,然后我们提出了一种动态的负采样方法来优化用户的隐式反馈。我们基于三个现实世界数据集进行广泛的实验,以展示我们的模型的效果。我们的源代码和预先训练的表示在https://github.com/lshowway/d-han提供。
translated by 谷歌翻译