视觉变压器(VIV)最近吸引了相当大的关注,但巨额的计算成本仍然是实际部署的问题。先前的Vit修剪方法倾向于仅仅沿着一个维度修剪模型,这可能遭受过度减少并导致次优模型质量。相比之下,我们倡导多维Vit压缩范例,并建议共同利用注意力头,神经元和序列尺寸的冗余减少。我们首先提出了一种基于统计依赖性的修剪标准,这是可以识别有害组分的不同尺寸的概括。此外,我们将多维压缩作为优化,在三个维度上学习最佳修剪策略,可以在计算预算下最大化压缩模型的准确性。通过我们适应的高斯流程搜索解决了预期的改进问题,解决了问题。实验结果表明,我们的方法有效降低了各种VIT模型的计算成本。例如,我们的方法减少了40 \%FLOPS,没有前1个精度损耗Deit和T2T-VT-VT模型,优于先前的最先进。
translated by 谷歌翻译
Vision Transformer已成为计算机视觉中的新范式,表现出出色的性能,同时还具有昂贵的计算成本。图像令牌修剪是VIT压缩的主要方法之一,这是因为相对于令牌数的复杂性是二次的,而许多仅包含背景区域的令牌并不能真正促进最终预测。现有作品要么依赖其他模块来评分单个令牌的重要性,要么为不同的输入实例实施固定比率修剪策略。在这项工作中,我们提出了一个自适应的稀疏令牌修剪框架,成本最低。我们的方法是基于可学习的阈值,并利用多头自我注意力来评估令牌信息,但几乎没有其他操作。具体而言,我们首先提出了廉价的注意力重点加权阶级注意力评分机制。然后,将可学习的参数插入VIT作为阈值,以区分信息令牌和不重要的令牌。通过比较令牌注意分数和阈值,我们可以从层次上丢弃无用的令牌,从而加速推理。可学习的阈值在预算感知培训中进行了优化,以平衡准确性和复杂性,并为不同的输入实例执行相应的修剪配置。广泛的实验证明了我们方法的有效性。例如,我们的方法将DEIT-S的吞吐量提高了50%,并且TOP-1的准确性仅下降了0.2%,这比以前的方法在准确性和延迟之间取得了更好的权衡。
translated by 谷歌翻译
在本文中,我们通过利用视觉数据中的空间稀疏性提出了一种新的模型加速方法。我们观察到,视觉变压器中的最终预测仅基于最有用的令牌的子集,这足以使图像识别。基于此观察,我们提出了一个动态的令牌稀疏框架,以根据加速视觉变压器的输入逐渐和动态地修剪冗余令牌。具体而言,我们设计了一个轻量级预测模块,以估计给定当前功能的每个令牌的重要性得分。该模块被添加到不同的层中以层次修剪冗余令牌。尽管该框架的启发是我们观察到视觉变压器中稀疏注意力的启发,但我们发现自适应和不对称计算的想法可能是加速各种体系结构的一般解决方案。我们将我们的方法扩展到包括CNN和分层视觉变压器在内的层次模型,以及更复杂的密集预测任务,这些任务需要通过制定更通用的动态空间稀疏框架,并具有渐进性的稀疏性和非对称性计算,用于不同空间位置。通过将轻质快速路径应用于少量的特征,并使用更具表现力的慢速路径到更重要的位置,我们可以维护特征地图的结构,同时大大减少整体计算。广泛的实验证明了我们框架对各种现代体系结构和不同视觉识别任务的有效性。我们的结果清楚地表明,动态空间稀疏为模型加速提供了一个新的,更有效的维度。代码可从https://github.com/raoyongming/dynamicvit获得
translated by 谷歌翻译
最近,视觉变压器(VIT)及其变体在各种计算机视觉任务中取得了有希望的表现。然而,VITS的高计算成本和培训数据要求将其应用程序限制在资源受限设置中。模型压缩是加快深度学习模型的有效方法,但压缩VITS的研究已经不太探索。许多以前的作品集中在减少令牌的数量。然而,这种攻击行会破坏VIT的空间结构,并且难以推广到下游任务中。在本文中,我们设计了统一的框架,用于对VITS及其变体的结构修剪,即升级Vits。我们的方法侧重于修剪所有VITS组件,同时保持模型结构的一致性。丰富的实验结果表明,我们的方法可以在压缩VITS和变体上实现高精度,例如,UP-DEIT-T在Imagenet上实现了75.79%的精度,这与Vanilla Deit-T以相同的计算成本优于3.59%。 UP-PVTV2-B0提高了PVTV2-B0的精度4.83%,以进行想象成分类。同时,上升VITS维护令牌表示的一致性,并在对象检测任务上提高一致的改进。
translated by 谷歌翻译
视觉变压器(VITS)在各种计算机视觉任务方面取得了令人印象深刻的性能。然而,与多头自我关注(MSA)层建模的全局相关性导致两个广泛认可的问题:大规模计算资源消耗和用于建模局部视觉模式的内在电感偏差。一个统一的解决方案是搜索是否用基于神经架构搜索(NAS)的修剪方法来替换具有卷积相对的电感偏差的一些MSA层。然而,将MSA和不同的候选卷积作业保持为单独的可训练路径,这导致昂贵的搜索成本和具有挑战性的优化。相反,我们提出了一种新的MSA和卷积操作之间的重量共享方案,并将搜索问题投射为查找在每个MSA层中使用的参数子集。重量分享方案还允许我们设计自动单路径视觉变压器修剪方法(SPVIT),以便将预先训练的VIS,精简和紧凑的混合模型中快速修剪,以显着降低的搜索成本,给定目标效率约束。我们对两个代表性毒性模型进行了广泛的实验,显示了我们的方法实现了有利的准确性效率折衷。代码可在https://github.com/zhuang-group/spvit使用。
translated by 谷歌翻译
本文探讨了从视觉变压器查找最佳子模型的可行性,并引入了纯Vision变压器减肥(VIT-SLIM)框架,可以在跨多个维度从原始模型的端到端搜索这样的子结构,包括输入令牌,MHSA和MLP模块,具有最先进的性能。我们的方法基于学习和统一的L1稀疏限制,具有预定的因素,以反映不同维度的连续搜索空间中的全局重要性。通过单次训练方案,搜索过程非常有效。例如,在DeIT-S中,VIT-SLIM仅需要〜43 GPU小时进行搜索过程,并且搜索结构具有灵活的不同模块中的多维尺寸。然后,根据运行设备上的精度折叠折衷的要求采用预算阈值,并执行重新训练过程以获得最终模型。广泛的实验表明,我们的耐比可以压缩高达40%的参数和40%的视觉变压器上的40%拖鞋,同时在Imagenet上提高了〜0.6%的精度。我们还展示了我们搜索模型在几个下游数据集中的优势。我们的源代码将公开提供。
translated by 谷歌翻译
最近,视觉变压器(VIT)在计算机视野中连续建立了新的里程碑,而高计算和内存成本使其在工业生产中的传播困难。修剪是一种用于硬件效率的传统模型压缩范例,已广泛应用于各种DNN结构。尽管如此,它含糊不清,如何在vit结构上进行独家修剪。考虑三个关键点:结构特征,VITS的内部数据模式和相关边缘设备部署,我们利用输入令牌稀疏性并提出了一种计算感知软修剪框架,可以在扁平的vanilla变压器上设置。和CNN型结构,例如基于池的Vit(坑)。更具体地说,我们设计了一种基于动态关注的多头令牌选择器,它是一个轻量级模块,用于自适应实例 - 明智令牌选择。我们进一步引入了一种软修剪技术,它将选择器模块生成的较少的信息令牌集成到将参与后续计算的包令牌,而不是完全丢弃。我们的框架通过我们所提出的计算感知培训策略,我们通过特定边缘设备的准确性和计算限制之间的权衡。实验结果表明,我们的框架显着降低了VIT的计算成本,同时在图像分类上保持了可比性。此外,我们的框架可以保证所识别的模型,以满足移动设备和FPGA的资源规范,甚至在移动平台上实现DEIT-T的实时执行。例如,我们的方法在移动设备上减少了DEIT-T至26毫秒的延迟(26%$ \ SIM 41%的41%),在移动设备上,在0.25%$ \ sim $ 4%的ImageNet上的前1个精度高出4%。我们的代码即将发布。
translated by 谷歌翻译
Vision变形金刚(VITS)最近获得了爆炸性的人气,但巨额的计算成本仍然是一个严峻的问题。由于VIT的计算复杂性相对于输入序列长度是二次的,因此用于计算还原的主流范例是减少令牌的数量。现有设计包括结构化空间压缩,该压缩使用逐行缩小的金字塔来减少大型特征映射的计算,并且动态丢弃冗余令牌的非结构化令牌修剪。然而,现有令牌修剪的限制在两倍以下:1)由修剪引起的不完全空间结构与现代深窄变压器通常使用的结构化空间压缩不兼容; 2)通常需要耗时的预训练程序。为了解决局限性并扩大令牌修剪的适用场景,我们提出了Evo-Vit,一种自动激励的慢速令牌演化方法,用于视觉变压器。具体而言,我们通过利用原产于视觉变压器的简单有效的全球课程关注来进行非结构化的案例 - 明智的选择。然后,我们建议使用不同的计算路径更新所选的信息令牌和未表征性令牌,即慢速更新。由于快速更新机制保持空间结构和信息流,因此Evo-Vit可以从训练过程的开始,从训练过程的开始,加速平坦和深窄的结构的Vanilla变压器。实验结果表明,我们的方法显着降低了视觉变压器的计算成本,同时在图像分类上保持了可比性。
translated by 谷歌翻译
视觉变压器(VITS)已成为各种视觉任务的流行结构和优于卷积神经网络(CNNS)。然而,这种强大的变形金机带来了巨大的计算负担。而这背后的基本障碍是排气的令牌到令牌比较。为了缓解这一点,我们深入研究Vit的模型属性,观察到VITS表现出稀疏关注,具有高令牌相似性。这直观地向我们介绍了可行的结构不可知的尺寸,令牌编号,以降低计算成本。基于这一探索,我们为香草vits提出了一种通用的自我切片学习方法,即坐下。具体而言,我们首先设计一种新颖的令牌减肥模块(TSM),可以通过动态令牌聚集来提高VIT的推理效率。不同于令牌硬滴,我们的TSM轻轻地集成了冗余令牌变成了更少的信息,可以在不切断图像中的鉴别性令牌关系的情况下动态缩放视觉注意。此外,我们介绍了一种简洁的密集知识蒸馏(DKD)框架,其密集地以柔性自动编码器方式传送无组织的令牌信息。由于教师和学生之间的结构类似,我们的框架可以有效地利用结构知识以获得更好的收敛性。最后,我们进行了广泛的实验来评估我们的坐姿。它展示了我们的方法可以通过1.7倍加速VITS,其精度下降可忽略不计,甚至在3.6倍上加速VITS,同时保持其性能的97%。令人惊讶的是,通过简单地武装LV-VIT与我们的坐线,我们在想象中实现了新的最先进的表现,超过了最近文学中的所有CNN和VITS。
translated by 谷歌翻译
视觉变形金刚(VITS)继承了NLP的成功,但它们的结构尚未充分调查并针对视觉任务进行优化。最简单的解决方案之一是通过CNN中的广泛使用的神经结构搜索(NAS)直接搜索最佳的问题。但是,我们经验探讨了这种直接的适应将遇到灾难性的失败,并对超级形式的培训感到沮丧。在本文中,我们认为,由于VITS主要在令牌嵌入具有很小的归纳偏差上运行,因此不同架构的通道的不平衡将使重量共享假设恶化并导致培训不稳定。因此,我们开发了一种新的循环重量共享机制,用于令牌的VITS嵌入式,这使得每个通道能够更均匀地贡献所有候选架构。此外,我们还提出了身份转移,以减轻超级形式的多对一问题,并利用弱的增强和正规化技术以维持更稳定的培训。基于这些,我们所提出的方法Vitas在Deit-and Twins的Vits中取得了显着的优势。例如,只有1.4美元的G拖鞋预算,我们搜索的架构有3.3 \%$ ImageNet-比基准Deit为1美元$ k准确性。我们的结果达到3.0美元,我们的结果达到了82.0 \%$ 1 $ k,$ 1 $ k,$ 45.9 \%$ 2017 $上涨,这是2.4美元的$ 2.4 \%$优于其他VITS。
translated by 谷歌翻译
虽然最先进的视觉变压器模型实现了图像分类的有希望的结果,但它们是非常昂贵的并且需要许多GFLOPS。尽管可以通过减少网络中的令牌数量来降低视觉变压器的GFLOPS,但是没有对所有输入图像的最佳设置。因此,在这项工作中,我们引入了可分辨率的无参数自适应令牌采样(ATS)模块,可以插入任何现有的视觉变压器架构。通过评分和自适应采样重要令牌,在视觉变压器上实现视觉变压器。结果,令牌的数量不再静态,但是每个输入图像都变化。通过将ATS集成为当前变压器块内的附加层,我们可以将它们转换为具有自适应令牌的更高效的视觉变压器。由于ATS是一种无参数模块,因此它可以作为即插即用模块添加到从货架上的预制视觉变压器中,从而在没有任何额外训练的情况下减少他们的GFLOP。但是,由于其可分辨动的设计,人们还可以培训配有ATS的视觉变压器。通过将其添加到多个最先进的视觉变压器,我们在想象成数据集上进行评估。我们的评估表明,通过将计算成本(GFLOPS)降低37%,在保留准确性时,该模块通过降低了37%,提高了最先进的模块。
translated by 谷歌翻译
To reduce the significant redundancy in deep Convolutional Neural Networks (CNNs), most existing methods prune neurons by only considering statistics of an individual layer or two consecutive layers (e.g., prune one layer to minimize the reconstruction error of the next layer), ignoring the effect of error propagation in deep networks. In contrast, we argue that it is essential to prune neurons in the entire neuron network jointly based on a unified goal: minimizing the reconstruction error of important responses in the "final response layer" (FRL), which is the secondto-last layer before classification, for a pruned network to retrain its predictive power. Specifically, we apply feature ranking techniques to measure the importance of each neuron in the FRL, and formulate network pruning as a binary integer optimization problem and derive a closed-form solution to it for pruning neurons in earlier layers. Based on our theoretical analysis, we propose the Neuron Importance Score Propagation (NISP) algorithm to propagate the importance scores of final responses to every neuron in the network. The CNN is pruned by removing neurons with least importance, and then fine-tuned to retain its predictive power. NISP is evaluated on several datasets with multiple CNN models and demonstrated to achieve significant acceleration and compression with negligible accuracy loss.
translated by 谷歌翻译
AD相关建模在包括Microsoft Bing在内的在线广告系统中起着至关重要的作用。为了利用强大的变压器在这种低延迟设置中,许多现有方法脱机执行广告端计算。虽然有效,但这些方法无法提供冷启动广告,从而导致对此类广告的相关性预测不佳。这项工作旨在通过结构化修剪设计一种新的低延迟BERT,以在CPU平台上授权实时在线推断对Cold Start Ads相关性。我们的挑战是,以前的方法通常将变压器的所有层都缩减为高,均匀的稀疏性,从而产生无法以可接受的精度实现令人满意的推理速度的模型。在本文中,我们提出了SwiftPruner - 一个有效的框架,利用基于进化的搜索自动在所需的延迟约束下自动找到表现最佳的稀疏BERT模型。与进行随机突变的现有进化算法不同,我们提出了一个具有潜伏意见的多目标奖励的增强突变器,以进行更好的突变,以有效地搜索层稀疏模型的大空间。广泛的实验表明,与均匀的稀疏基线和最先进的搜索方法相比,我们的方法始终达到更高的ROC AUC和更低的潜伏度。值得注意的是,根据我们在1900年的延迟需求,SwiftPruner的AUC比Bert-Mini在大型现实世界数据集中的最先进的稀疏基线高0.86%。在线A/B测试表明,我们的模型还达到了有缺陷的冷启动广告的比例,并获得了令人满意的实时服务延迟。
translated by 谷歌翻译
VITS通常太昂贵昂贵,无法安装在现实世界资源受限的设备上,因为(1)它们与输入令牌的数量和(2)其过度分开的自我关注头和模型深度相反的复杂性。并行地,不同的图像具有变化性变化,并且它们的不同区域可以包含各种级别的视觉信息,表明在模型复杂性方面同样地处理所有区域/令牌是不必要的,而这些机会尚未完全探索修剪vits的复杂性的机会。为此,我们提出了一种多粒子的输入 - 自适应视觉变压器框架被称为MIA-Fight,可以在三个粗粒细粒粒度(即,模型深度和模型数量的数量头/令牌)。特别是,我们的MIA-Agent采用具有混合监督和加固训练方法的低成本网络,以跳过不必要的层,头部和令牌以输入的自适应方式,降低整体计算成本。此外,我们的mia-ideor的有趣副作用是它的由此产生的vits自然地配备了对他们静态同行的对抗对抗攻击的改善的鲁棒性,因为米娅 - 以前的多粒度动态控制改善了模型多样性,类似于集合的效果因此,增加对抗所有子模型的对抗性攻击的难度。广泛的实验和消融研究验证了所提出的MIA - 前框架可以有效地分配适应性的计算预算与输入图像的难度增加,同时增加稳健性,实现最先进的(SOTA)精度效率权衡,例如20与SOTA动态变压器模型相比,%计算节省相同甚至更高的准确性。
translated by 谷歌翻译
With the success of Vision Transformers (ViTs) in computer vision tasks, recent arts try to optimize the performance and complexity of ViTs to enable efficient deployment on mobile devices. Multiple approaches are proposed to accelerate attention mechanism, improve inefficient designs, or incorporate mobile-friendly lightweight convolutions to form hybrid architectures. However, ViT and its variants still have higher latency or considerably more parameters than lightweight CNNs, even true for the years-old MobileNet. In practice, latency and size are both crucial for efficient deployment on resource-constraint hardware. In this work, we investigate a central question, can transformer models run as fast as MobileNet and maintain a similar size? We revisit the design choices of ViTs and propose an improved supernet with low latency and high parameter efficiency. We further introduce a fine-grained joint search strategy that can find efficient architectures by optimizing latency and number of parameters simultaneously. The proposed models, EfficientFormerV2, achieve about $4\%$ higher top-1 accuracy than MobileNetV2 and MobileNetV2$\times1.4$ on ImageNet-1K with similar latency and parameters. We demonstrate that properly designed and optimized vision transformers can achieve high performance with MobileNet-level size and speed.
translated by 谷歌翻译
由于缺乏电感偏见,视觉变压器(VIT)通常被认为比卷积神经网络(CNN)少。因此,最近的工作将卷积作为插件模块,并将其嵌入各种Vit对应物中。在本文中,我们认为卷积内核执行信息聚合以连接所有令牌。但是,如果这种明确的聚合能够以更均匀的方式起作用,则实际上是轻重量VIT的不必要的。受到这一点的启发,我们将Lightvit作为新的轻巧VIT家族,以在不卷积的情况下在纯变压器块上实现更好的准确性效率平衡。具体而言,我们将一个全球但有效的聚合方案引入了VIT的自我注意力和前馈网络(FFN),其中引入了其他可学习的令牌以捕获全球依赖性;在令牌嵌入上施加了双维通道和空间注意力。实验表明,我们的模型在图像分类,对象检测和语义分割任务上取得了重大改进。例如,我们的LightVit-T仅使用0.7G拖鞋的ImageNet上达到78.7%的精度,在GPU上的PVTV2-B0优于8.2%,而GPU的速度快11%。代码可在https://github.com/hunto/lightvit上找到。
translated by 谷歌翻译
视觉变压器(VIT)在计算机视觉任务中取得了许多突破。但是,输入图像的空间维度出现了相当大的冗余,导致了巨大的计算成本。因此,我们提出了一个粗糙的视觉变压器(CF-VIT),以减轻计算负担,同时在本文中保持绩效。我们提出的CF-VIT是由现代VIT模型中的两个重要观察结果激励的:(1)粗粒斑分裂可以找到输入图像的信息区域。 (2)大多数图像可以通过小型令牌序列中的VIT模型很好地识别。因此,我们的CF-Vit以两阶段的方式实现网络推断。在粗糙的推理阶段,输入图像分为一个小长度贴片序列,以进行计算经济分类。如果不公认的话,请确定信息斑块,并在细粒度的细粒度中进一步重新分解。广泛的实验证明了我们CF-VIT的功效。例如,在不妥协性能的情况下,CF-VIT可以减少53%的LV-VIT拖鞋,还可以达到2.01倍的吞吐量。
translated by 谷歌翻译
深度学习技术在各种任务中都表现出了出色的有效性,并且深度学习具有推进多种应用程序(包括在边缘计算中)的潜力,其中将深层模型部署在边缘设备上,以实现即时的数据处理和响应。一个关键的挑战是,虽然深层模型的应用通常会产生大量的内存和计算成本,但Edge设备通常只提供非常有限的存储和计算功能,这些功能可能会在各个设备之间差异很大。这些特征使得难以构建深度学习解决方案,以释放边缘设备的潜力,同时遵守其约束。应对这一挑战的一种有希望的方法是自动化有效的深度学习模型的设计,这些模型轻巧,仅需少量存储,并且仅产生低计算开销。该调查提供了针对边缘计算的深度学习模型设计自动化技术的全面覆盖。它提供了关键指标的概述和比较,这些指标通常用于量化模型在有效性,轻度和计算成本方面的水平。然后,该调查涵盖了深层设计自动化技术的三类最新技术:自动化神经体系结构搜索,自动化模型压缩以及联合自动化设计和压缩。最后,调查涵盖了未来研究的开放问题和方向。
translated by 谷歌翻译
视觉变压器由于能够捕获图像中的长期依赖性的能力而成功地应用于图像识别任务。但是,变压器与现有卷积神经网络(CNN)之间的性能和计算成本仍然存在差距。在本文中,我们旨在解决此问题,并开发一个网络,该网络不仅可以超越规范变压器,而且可以超越高性能卷积模型。我们通过利用变压器来捕获长期依赖性和CNN来建模本地特征,从而提出了一个新的基于变压器的混合网络。此外,我们将其扩展为获得一个称为CMT的模型家族,比以前的基于卷积和基于变压器的模型获得了更好的准确性和效率。特别是,我们的CMT-S在ImageNet上获得了83.5%的TOP-1精度,而在拖鞋上的拖曳率分别比现有的DEIT和EficitiveNet小14倍和2倍。拟议的CMT-S还可以很好地概括CIFAR10(99.2%),CIFAR100(91.7%),花(98.7%)以及其他具有挑战性的视觉数据集,例如可可(44.3%地图),计算成本较小。
translated by 谷歌翻译
我们考虑在具有挑战性的训练后环境中,深度神经网络(DNN)的模型压缩问题,在该设置中,我们将获得精确的训练模型,并且必须仅基于少量校准输入数据而无需任何重新培训即可压缩它。鉴于新兴软件和硬件支持通过加速修剪和/或量化压缩的模型,并且已经针对两种压缩方法独立提出了良好的表现解决方案,因此该问题已变得流行。在本文中,我们引入了一个新的压缩框架,该框架涵盖了统一环境中的重量修剪和量化,时间和空间效率高,并且在现有的后训练方法的实际性能上大大改善。在技​​术层面上,我们的方法基于[Lecun,Denker和Solla,1990年]在现代DNN的规模上的经典最佳脑外科医生(OBS)框架的第一个精确实现,我们进一步扩展到覆盖范围。重量量化。这是通过一系列可能具有独立利益的算法开发来实现的。从实际的角度来看,我们的实验结果表明,它可以在现有后训练方法的压缩 - 准确性权衡方面显着改善,并且甚至可以在训练后进行修剪和量化的准确共同应用。
translated by 谷歌翻译