传统上,音乐标记和基于内容的检索系统是使用预定的本体论构建的,涵盖了一组刚性的音乐属性或文本查询。本文介绍了Mulan:首次尝试新一代的声学模型,这些模型将音乐音频直接与无约束的自然语言描述联系起来。Mulan采用了两座联合音频文本嵌入模型的形式,该模型使用4400万张音乐录音(37万小时)和弱相关的自由形式文本注释训练。通过与广泛的音乐流派和文本样式(包括传统的音乐标签)的兼容性,由此产生的音频文本表示形式涵盖了现有的本体论,同时又毕业至真正的零击功能。我们通过一系列实验演示了Mulan嵌入的多功能性,包括转移学习,零照片标记,音乐域中的语言理解以及跨模式检索应用程序。
translated by 谷歌翻译
作为人类已知的最直观的界面之一,自然语言有可能调解许多涉及人类计算机互动的任务,尤其是在音乐信息检索等以应用程序为中心的领域。在这项工作中,我们探索了跨模式学习,以试图在音乐领域弥合音频和语言。为此,我们提出了Muscall,这是音乐对比的音频学习框架。我们的方法由双重编码架构组成,该体系结构了解音乐音频和描述性句子对之间的对齐方式,生成可用于文本到原告和音频到文本检索的多模式嵌入。多亏了这个属性,肌肉几乎可以转移到任何可以作为基于文本检索的任务转移到任何任务。我们的实验表明,我们的方法在检索音频时的性能要比基线要好得多,该音频与文本描述匹配,相反,与音频查询匹配的文本。我们还证明,我们的模型的多模式对齐能力可以成功扩展到零摄像转移方案,用于流派分类和在两个公共数据集上自动标记。
translated by 谷歌翻译
音乐信息检索的音频表示通常通过以特定于任务的方式通过监督学习来学习。虽然有效地产生最先进的结果,但该方案对于模型可以具有并且需要广泛的注释数据集的应用范围缺乏灵活性。在这项工作中,我们构成了是否可以利用弱对齐文本作为唯一用于学习通用音频音频表示的监督信号的问题。为了解决这个问题,我们设计了通过一组代理任务优化的音乐和语言预训练(Mulap)的多模式架构。弱监管以嘈杂的自然语言描述形式传达轨道的整体音乐纪念。在预训练之后,我们将模型的音频骨干转换为一组音乐音频分类和回归任务。我们通过比较通过不同培训策略产生的相同音频骨干声音产生的音频表示的性能并表明我们的预训练方法始终如一地实现所有任务和数据集所考虑的可比分数,因此证明了我们的方法。我们的实验还证实,Mulap有效利用音频标题对,以学习与文献中的音频和跨模型自我监督方法具有竞争力的表示。
translated by 谷歌翻译
可以代表和描述环境声音的机器具有实际潜力,例如,用于音频标记和标题系统。普遍的学习范式已经依赖于并行音频文本数据,但是,Web上几乎没有可用。我们提出了vip-ant,它在不使用任何并行音频文本数据的情况下诱导\ textbf {a} udio- \ textBF {t} EXT对齐。我们的主要思想是在双模形图像文本表示和双模态图像 - 音频表示之间共享图像模型;图像模态用作枢轴,并将音频和文本连接在三模态嵌入空间中。在没有配对的音频文本数据的困难零拍设置中,我们的模型在ESC50和US8K音频分类任务上展示了最先进的零点性能,甚至超过了披肩标题的领域的监督状态检索(带音频查询)2.2 \%R @ 1。我们进一步调查了最小音频监控的情况,发现,例如,只有几百个监督的音频文本对将零拍音频分类精度提高8 \%US8K。然而,为了匹配人类奇偶校验,我们的经验缩放实验表明我们需要大约2米$ 2 ^ {21} \约2M $监督的音频标题对。我们的工作开辟了新的途径,用于学习音频文本连接,几乎没有并行音频文本数据。
translated by 谷歌翻译
来自视频数据的多模态学习最近看过,因为它允许在没有人为注释的情况下培训语义有意义的嵌入,从而使得零射击检索和分类等任务。在这项工作中,我们提出了一种多模态,模态无政府主义融合变压器方法,它学会在多个模态之间交换信息,例如视频,音频和文本,并将它们集成到加入的多模态表示中,以获取聚合的嵌入多模态时间信息。我们建议培训系统的组合丢失,单个模态以及成对的方式,明确地留出任何附加组件,如位置或模态编码。在测试时间时,产生的模型可以处理和融合任意数量的输入模态。此外,变压器的隐式属性允许处理不同长度的输入。为了评估所提出的方法,我们在大规模HOWASET上培训模型,并评估四个具有挑战性的基准数据集上产生的嵌入空间获得最先进的视频检索和零射击视频动作定位。
translated by 谷歌翻译
探索大规模预处理的基础模型对计算机视觉具有重大兴趣,因为这些模型可以快速转移到许多下游任务中。本文介绍了对比字幕(COCA),这是一种极简主义的设计,旨在为图像文本编码器编码器基础模型预算与对比度损失和字幕损失,从而从剪辑和诸如simvlm之类的生成方法之类的对比方法中包含模型能力。与所有解码器层都参与编码器输出的标准编码器 - 模块变压器相反,可口可乐省略了解码器层的上半部分的交叉注意,以编码单峰文本表示,并串联到剩余的解码器层,这些解码器与图像编码器相交的解码器层多模式图像文本表示。除了对多模态解码器输出的字幕损失外,我们还应用了单峰图像和文本嵌入之间的对比损失,该输出可以预测文本令牌自动加压。通过共享相同的计算图,可以用最小的开销有效地计算两个培训目标。可口可乐是端到端和从头开始的网络尺度alt-text数据和带注释的图像,通过将所有标签视为文本,无缝地统一自然语言监督以进行表示。从经验上讲,可口可乐通过零拍传输或在广泛的下游任务上进行零摄像转移或最少的特定任务适应,跨越视觉识别(Imagenet,Kinetics-400/600/700,瞬间, ),交叉模式检索(MSCOCO,FLICKR30K,MSR-VTT),多模式理解(VQA,SNLI-VE,NLVR2)和图像字幕(MSCOCO,NOCAPS)。值得注意的是,在Imagenet分类方面,COCA获得了86.3%的TOP-1准确性,带有冷冻编码器和学习的分类头90.6%,以及带有填充编码器的Imagenet上的新最先进的91.0%Top-1 Top-1精度。
translated by 谷歌翻译
We introduce LaViLa, a new approach to learning video-language representations by leveraging Large Language Models (LLMs). We repurpose pre-trained LLMs to be conditioned on visual input, and finetune them to create automatic video narrators. Our auto-generated narrations offer a number of advantages, including dense coverage of long videos, better temporal synchronization of the visual information and text, and much higher diversity of text. The video-text embedding learned contrastively with these additional auto-generated narrations outperforms the previous state-of-the-art on multiple first-person and third-person video tasks, both in zero-shot and finetuned setups. Most notably, LaViLa obtains an absolute gain of 10.1% on EGTEA classification and 5.9% Epic-Kitchens-100 multi-instance retrieval benchmarks. Furthermore, LaViLa trained with only half the narrations from the Ego4D dataset outperforms baseline models trained on the full set, and shows positive scaling behavior on increasing pre-training data and model size.
translated by 谷歌翻译
用于标记和分类声信号的标准机器学习模型无法处理训练过程中未见的类。通过基于适应性的类描述来预测类,零射击(ZS)学习克服了这一限制。这项研究旨在研究基于自我注意力的音频嵌入体系结构对ZS学习的有效性。为此,我们将最近的贴布频谱变压器与两个经典的卷积体系结构进行了比较。我们在三个任务和三个不同的基准数据集上评估了这三个架构:在Audioset上的通用标记,ESC-50上的环境声音分类以及OpenMIC上的仪器标记。我们的结果表明,基于自我注意的嵌入方法的表现都优于所有这些设置中的卷积架构。通过相应地设计培训和测试数据,我们观察到,当训练和新测试类之间的“语义距离”很大时,预测性能会大大受到影响,这种效果值得进行更详细的研究。
translated by 谷歌翻译
我们使用无卷积的变压器架构提出了一种从未标记数据学习多式式表示的框架。具体而言,我们的视频音频文本变压器(Vatt)将原始信号作为输入提取,提取丰富的多式化表示,以使各种下游任务受益。我们使用多模式对比损失从头划线训练Vatt端到端,并通过视频动作识别,音频事件分类,图像分类和文本到视频检索的下游任务评估其性能。此外,我们通过共享三种方式之间的重量来研究模型 - 无话的单骨架变压器。我们表明,无卷积VATT优于下游任务中的最先进的Convnet架构。特别是,Vatt的视觉变压器在动力学-400上实现82.1%的高精度82.1%,在动力学-600,72.7%的动力学-700上的72.7%,以及时间的时间,新的记录,在避免受监督的预训练时,新的记录。通过从头划伤训练相同的变压器,转移到图像分类导致图像分类导致78.7%的ImageNet精度为64.7%,尽管视频和图像之间的域间差距,我们的模型概括了我们的模型。 Vatt的音雅音频变压器还通过在没有任何监督的预训练的情况下在Audioset上实现39.4%的地图来设置基于波形的音频事件识别的新记录。 Vatt的源代码是公开的。
translated by 谷歌翻译
自动视觉解对我们多样化和开放的世界需要计算机视觉模型,以概括为特定任务的最小定制,类似于人类视力。计算机视觉基础型号培训,培训多样化,大型数据集,可以适应各种下游任务,对该任务来解决现实世界计算机视觉应用而言至关重要。虽然现有的视觉基础模型如剪辑,对齐和吴道2.0主要集中在映射图像和文本表示到跨模型共享表示,我们介绍了一台新的计算机视觉基础模型,佛罗伦萨,扩大粗糙的表示(现场)到精细(对象),从静态(图像)到动态(视频),以及从RGB到多个模态(标题,深度)。通过从Web级图像文本数据中纳入通用视觉语言表示,我们的佛罗伦萨模型可以很容易地适应各种计算机视觉任务,例如分类,检索,对象检测,VQA,图像标题,视频检索和动作识别。此外,佛罗伦萨在许多类型的转移学习中表现出出色的表现:全面采样的微调,线性探测,几次射击传输和用于新颖图像和物体的零拍摄传输。所有这些属性对于我们的视觉基础模型至关重要,以提供通用视觉任务。佛罗伦萨实现了新的最先进的导致44个代表性基准,例如Imagenet-1K零射击分类,最高1精度为83.74,最高5个精度为97.18,62.4地图上的Coco微调, 80.36在VQA上,动力学-600上的87.8。
translated by 谷歌翻译
最近,通过引入大规模的数据集和强大的变压器网络,视频预培训表明尤其是检索的巨大成功。然而,现有的视频语言变压器模型没有明确细粒度的语义对齐。在这项工作中,我们呈现了对象感知的变换器,以对象为中心的方法,该对象方法扩展了视频语言变压器来合并对象表示。关键的想法是利用边界框和对象标签来指导培训过程。我们在四个广泛使用的基准测试中评估了我们的三个标准子任务的模型。我们还提供了深入的分析和详细消融关于所提出的方法。我们在考虑的所有任务和数据集中表现出清晰的性能,展示将对象表示的模型中的型号集成到视频架构中。代码将以\ URL {https://github.com/fingerrec/oa -transformer}释放。
translated by 谷歌翻译
State-of-the-art computer vision systems are trained to predict a fixed set of predetermined object categories. This restricted form of supervision limits their generality and usability since additional labeled data is needed to specify any other visual concept. Learning directly from raw text about images is a promising alternative which leverages a much broader source of supervision. We demonstrate that the simple pre-training task of predicting which caption goes with which image is an efficient and scalable way to learn SOTA image representations from scratch on a dataset of 400 million (image, text) pairs collected from the internet. After pre-training, natural language is used to reference learned visual concepts (or describe new ones) enabling zero-shot transfer of the model to downstream tasks. We study the performance of this approach by benchmarking on over 30 different existing computer vision datasets, spanning tasks such as OCR, action recognition in videos, geo-localization, and many types of fine-grained object classification. The model transfers non-trivially to most tasks and is often competitive with a fully supervised baseline without the need for any dataset specific training. For instance, we match the accuracy of the original ResNet-50 on ImageNet zero-shot without needing to use any of the 1.28 million training examples it was trained on. We release our code and pre-trained model weights at https://github.com/OpenAI/CLIP.
translated by 谷歌翻译
Pre-trained representations are becoming crucial for many NLP and perception tasks. While representation learning in NLP has transitioned to training on raw text without human annotations, visual and vision-language representations still rely heavily on curated training datasets that are expensive or require expert knowledge. For vision applications, representations are mostly learned using datasets with explicit class labels such as Ima-geNet or OpenImages. For vision-language, popular datasets like Conceptual Captions, MSCOCO, or CLIP all involve a non-trivial data collection (and cleaning) process. This costly curation process limits the size of datasets and hence hinders the scaling of trained models. In this paper, we leverage a noisy dataset of over one billion image alt-text pairs, obtained without expensive filtering or post-processing steps in the Conceptual Captions dataset. A simple dual-encoder architecture learns to align visual and language representations of the image and text pairs using a contrastive loss. We show that the scale of our corpus can make up for its noise and leads to state-of-the-art representations even with such a simple learning scheme. Our visual representation achieves strong performance when transferred to classification tasks such as ImageNet and VTAB. The aligned visual and language representations enables zero-shot image classification and also set new state-of-the-art results on Flickr30K and MSCOCO image-text retrieval benchmarks, even when compared with more sophisticated crossattention models. The representations also enable cross-modality search with complex text and text + image queries.
translated by 谷歌翻译
作为人类,我们通过我们所有的感官来驾驭世界,使用每个人从每个人纠正其他人。我们介绍了Merlot Reserve,一个模型,该模型是联合随着时间的推移而表示视频的模型 - 通过从音频,字幕和视频帧学习的新培训目标。给出了一个视频,我们用掩模令牌替换文本和音频的片段;该模型通过选择正确的蒙版片段来学习。我们的目标比替代方面更快地学习,并在规模上表现良好:我们预先逼近2000万YouTube视频。经验结果表明,Merlot Reserve学会通过所有组成模式的视频的强烈陈述。在FineTuned时,它在VCR和TVQA上为VCR和TVQA进行了新的最先进,优先于前勤工作分别为5%和7%。消融表明,两个任务都受益于音频预制 - 甚至录像机,围绕图像中心的QA任务(没有声音)。此外,我们的客观使开箱即用的预测,揭示了强大的多式联合致辞理解。在一个完全零拍摄的环境中,我们的模型在四个视频理解任务中获得竞争结果,甚至优于最近提出的定位推理(星)基准的监督方法。我们分析为什么包含音频导致更好的视觉语言表示,这表明未来研究的重要机会。我们通过讨论多式联运预测的道德和社会影响来得出结论。
translated by 谷歌翻译
本文提出了一种对比调整,这是一种简单的方法,采用对比训练来对准图像和文本模型,同时仍然利用他们的预训练。在我们的实证研究中,我们发现,锁定的预训练图像模型与解锁文本模型最佳。我们调用这种对比调整“锁定图像文本调整”(LIT TOONING)的实例,该实例仅教导文本模型,从预先训练的图像模型中读出了良好的表示新任务。亮度调谐模型将零拍摄传输到新视觉任务的能力提高,例如图像分类或检索。建议的亮度调整是广泛适用的;它可以使用三种不同的图像文本数据集可靠地使用多种预训练方法(监督和无监督)和多种架构(Reset,Vision变换器和MLP-MILLER)。利用基于变压器的预训练VIT-G / 14型号,LIT调谐模型在想象网测试集中实现了84.5%的零射频传输精度,并且在充满挑战的分发ObjectNet测试集中实现了81.1%。
translated by 谷歌翻译
在过去的几年中,训练前模型的出现将单峰领域(例如计算机视觉(CV)和自然语言处理(NLP))带到了一个新时代。实质性的作品表明它们对下游大学任务有益,并避免从头开始训练新的模型。那么,此类预训练的模型可以应用于多模式任务吗?研究人员探索了这个问题并取得了重大进展。本文调查了视觉预训练(VLP)的最新进展和新的前沿,包括图像文本和视频文本预训练。为了使读者更好地掌握VLP,我们首先从五个方面回顾了其最新进展:功能提取,模型体系结构,培训预训练目标,预训练数据集和下游任务。然后,我们详细概述了特定的VLP模型。最后,我们讨论了VLP中的新边界。据我们所知,这是对VLP的首次调查。我们希望这项调查能够阐明VLP领域的未来研究。
translated by 谷歌翻译
我们研究了联合视频和语言(VL)预培训,以实现跨模型学习和益处丰富的下游VL任务。现有的作品要么提取低质量的视频特征或学习有限的文本嵌入,但忽略了高分辨率视频和多样化的语义可以显着提高跨模型学习。在本文中,我们提出了一种新的高分辨率和多样化的视频 - 语言预训练模型(HD-VILA),用于许多可视任务。特别是,我们收集具有两个不同属性的大型数据集:1)第一个高分辨率数据集包括371.5k小时的720p视频,2)最多样化的数据集涵盖15个流行的YouTube类别。为了启用VL预培训,我们通过学习丰富的时空特征的混合变压器联合优化HD-VILA模型,以及多峰变压器,用于强制学习视频功能与多样化文本的交互。我们的预训练模式实现了新的最先进的导致10 VL了解任务和2个新颖的文本到视觉生成任务。例如,我们以零拍摄MSR-VTT文本到视频检索任务的相对增加38.5%R @ 1的相对增长,高分辨率数据集LSMDC为53.6%。学习的VL嵌入也有效地在文本到视觉操纵和超分辨率任务中产生视觉上令人愉悦和语义相关结果。
translated by 谷歌翻译
Self-supervised learning has become increasingly important to leverage the abundance of unlabeled data available on platforms like YouTube. Whereas most existing approaches learn low-level representations, we propose a joint visual-linguistic model to learn high-level features without any explicit supervision. In particular, inspired by its recent success in language modeling, we build upon the BERT model to learn bidirectional joint distributions over sequences of visual and linguistic tokens, derived from vector quantization of video data and off-the-shelf speech recognition outputs, respectively. We use VideoBERT in numerous tasks, including action classification and video captioning. We show that it can be applied directly to openvocabulary classification, and confirm that large amounts of training data and cross-modal information are critical to performance. Furthermore, we outperform the state-of-theart on video captioning, and quantitative results verify that the model learns high-level semantic features.
translated by 谷歌翻译
The remarkable success of deep learning in various domains relies on the availability of large-scale annotated datasets. However, obtaining annotations is expensive and requires great effort, which is especially challenging for videos. Moreover, the use of human-generated annotations leads to models with biased learning and poor domain generalization and robustness. As an alternative, self-supervised learning provides a way for representation learning which does not require annotations and has shown promise in both image and video domains. Different from the image domain, learning video representations are more challenging due to the temporal dimension, bringing in motion and other environmental dynamics. This also provides opportunities for video-exclusive ideas that advance self-supervised learning in the video and multimodal domain. In this survey, we provide a review of existing approaches on self-supervised learning focusing on the video domain. We summarize these methods into four different categories based on their learning objectives: 1) pretext tasks, 2) generative learning, 3) contrastive learning, and 4) cross-modal agreement. We further introduce the commonly used datasets, downstream evaluation tasks, insights into the limitations of existing works, and the potential future directions in this area.
translated by 谷歌翻译
现有视觉语言预训练(VLP)方法主要依赖于配对的图像文本数据集,这些数据集由大量人类劳动注释,或者从互联网上爬行,然后是精心制作的数据清洁技术。为了减少对良好的图像文本对的依赖,有望直接利用仅大规模的仅文本和仅图像的语料库。本文提出了一种数据增强方法,即跨模式cutmix(CMC),用于在未配对的VLP中进行隐式跨模式对齐学习。具体而言,CMC将自然句子从文本视图转换为多模式视图,在该视图中,句子中的视觉词语单词被带有相似语义的各种图像贴片随机替换。拟议中的CMC有几个吸引人的礼节。首先,它增强了数据多样性,同时保持语义含义完好无损地解决了对齐数据稀缺的问题;其次,通过将跨模式噪声连接到单模式数据上,它指导模型以学习跨模态的令牌级相互作用,以更好地降级。此外,我们提出了一种名为VLMIXER的新的未配对VLP方法,该方法将CMC与对比度学习集成在一起,以将Uni-Mododal和多模式视图汇总在一起,以在不同模式之间进行更好的实例级别对齐。在五个下游任务上进行的广泛实验表明,VLMIXER可以超过以前最先进的未配对VLP方法。
translated by 谷歌翻译