多限制攀岩机器人的运动计划必须考虑机器人的姿势,联合扭矩,以及它如何使用接触力与环境相互作用。本文着重于使用非传统运动来探索不可预测的环境(例如火星洞穴)的机器人运动计划。我们的机器人概念Reachbot使用可扩展和可伸缩的动臂作为四肢,在攀爬时实现了大型可伸缩度工作区。每个可扩展的动臂都由旨在抓住岩石表面的微生物抓地力封顶。 Reachbot利用其大型工作空间来绕过障碍物,裂缝和挑战地形。我们的计划方法必须具有多功能性,以适应可变的地形特征和鲁棒性,以减轻用刺抓握随机性质的风险。在本文中,我们引入了一种图形遍历算法,以根据适用于握把的可用地形特征选择一个离散的grasps序列。该离散的计划是由一个解耦运动计划者互补的,该计划者使用基于抽样的计划和顺序凸面编程的组合来考虑身体运动和最终效应器运动的交替阶段,以优化单个阶段。我们使用运动规划师在模拟的2D洞穴环境中计划轨迹,至少有95%的成功概率,并在基线轨迹上表现出改善的鲁棒性。最后,我们通过对2D平面原型进行实验来验证运动计划算法。
translated by 谷歌翻译
多步兵的操纵任务(例如打开推动的儿童瓶)需要机器人来做出各种计划选择,这些选择受到在任务期间施加力量的要求所影响的各种计划。机器人必须推荐与动作顺序相关的离散和连续选择,例如是否拾取对象以及每个动作的参数,例如如何掌握对象。为了实现计划和执行有力的操纵,我们通过限制了扭矩和摩擦限制,通过拟议的有力的运动链约束来增强现有的任务和运动计划者。在三个领域,打开一个防儿童瓶,扭动螺母并切割蔬菜,我们演示了系统如何从组合组合组合中进行选择。我们还展示了如何使用成本敏感的计划来查找强大的策略和参数物理参数的不确定性。
translated by 谷歌翻译
这项工作为过度分配的平台提供了计算轻量级运动计划器。为此,定义了针对具有多个运动链的移动平台的一般状态空间模型,该模型考虑了非线性和约束。提出的运动计划者基于一种顺序多阶段方法,该方法利用了每个步骤的温暖起步。首先,使用快速行进方法生成全球最佳和平滑的2D/3D轨迹。该轨迹作为温暖的开端馈送到一个顺序线性二次调节器,该线性二次调节器能够生成一个最佳运动计划,而无需为所有平台执行器限制。最后,考虑到模型中定义的约束,生成了可行的运动计划。在这方面,再次采用了顺序线性二次调节器,以先前生成的不受限制的运动计划作为温暖的开始。这种新颖的方法已被部署到欧洲航天局的Exomars测试漫游车中。这款漫游者是具有机器人臂的可容纳Ackermann能力的行星勘探测试床。进行了几项实验,表明所提出的方法加快了计算时间的速度,增加了火星样品检索任务的成功率,可以将其视为过度插入移动平台的代表性用例。
translated by 谷歌翻译
本文介绍了Scalucs,这是一种四足动物,该机器人在地上,悬垂和天花板上爬上攀爬,并在地面上爬行。 Scaleer是最早的自由度四束机器人之一,可以在地球的重力下自由攀爬,也是地面上最有效的四足动物之一。在其他最先进的登山者专门攀登自己的地方,Scaleer承诺使用有效载荷\ Textit {和}地面运动实践自由攀爬,这实现了真正的多功能移动性。新的攀登步态滑冰步态通过利用缩放器的身体连锁机制来增加有效载荷。 Scaleer在地面上达到了最大归一化的运动速度,即$ 1.87 $ /s,$ 0.56 $ m /s,$ 1.2 $ /min,或$ 0.42 $ m /min /min的岩石墙攀爬。有效载荷能力达到地面上缩放器重量的233美元,垂直墙上的$ 35 $%。我们的山羊抓手是一种机械适应的两指抓手,成功地抓住了凸凸和非凸的对象,并支持缩放器。
translated by 谷歌翻译
用多腿机器人的动态跳跃在规划和控制方面提出了一个具有挑战性的问题。制定跳转优化以允许快速在线执行难;有效地使用这种能够生成长地平轨迹的能力进一步复杂化问题。在这项工作中,我们提出了一种新的分层规划框架来解决这个问题。我们首先制定了一个实时的轨道轨迹优化,用于执行全向跳跃。然后,我们将该优化的结果嵌入到低维跳转可行性分类器中。该分类器由高级策划器利用,以产生动态可行的路径,并且对硬件轨迹实现中的可变性也很稳健。我们在迷你猎豹视觉上部署我们的框架,展示了机器人的生成和执行可靠的目标导向路径,这些路径涉及前进,横向和旋转跳跃到比机器人的标称臀部高度高1.35倍。通过全向跳跃计划的能力极大地扩展了机器人相对于限制跳跃到矢状或前平面的规划者的移动性。
translated by 谷歌翻译
尽管腿部机器人的运动计划表现出了巨大的成功,但具有灵活的多指抓握的腿部机器人的运动计划尚未成熟。我们提出了一个有效的运动计划框架,用于同时解决运动(例如,质心动力学),抓地力(例如,贴片接触)和触点(例如步态)问题。为了加速计划过程,我们建议基于乘数的交替方向方法(ADMM)提出分布式优化框架,以求解原始的大型混合构成非整数非线性编程(MINLP)。最终的框架使用混合构成二次编程(MIQP)来求解联系人和非线性编程(NLP)来求解非线性动力学,这些动力学在计算方面更可行,对参数较不敏感。此外,我们通过微蜘蛛抓手从极限表面明确执行补丁接触约束。我们在硬件实验中演示了我们提出的框架,这表明多限制机器人能够实现各种动作,包括在斜坡角度45 {\ deg}的情况下进行较短的计划时间。
translated by 谷歌翻译
本文提出了一个层次结构框架,用于计划和控制涉及使用完全插入的多指机器人手的掌握变化的刚性对象的操纵。尽管该框架可以应用于一般的灵巧操作,但我们专注于对手持操作的更复杂的定义,在该目标下,目标姿势必须达到适合使用该对象作为工具的掌握。高级别的计划者确定对象轨迹以及掌握更改,即添加,卸下或滑动手指,由低级控制器执行。尽管基于学习的策略可以适应变化,但GRASP序列是在线计划的,但用于对象跟踪和接触力控制的轨迹规划师和低级控制器仅基于模型,以稳健地实现该计划。通过将有关问题的物理和低级控制器的知识注入GRASP规划师中,它将学会成功生成类似于基于模型的优化方法生成的grasps,从而消除了此类方法的高计算成本到该方法的高度计算成本到解释变化。通过在物理模拟中进行实验,以实现现实工具使用方案,我们将在不同的工具使用任务和灵活的手模型上展示了方法的成功。此外,我们表明,与基于模型的方法相比,这种混合方法为轨迹和任务变化提供了更大的鲁棒性。
translated by 谷歌翻译
由于机器人动力学中的固有非线性,腿部机器人全身动作的在线计划具有挑战性。在这项工作中,我们提出了一个非线性MPC框架,该框架可以通过有效利用机器人动力学结构来在线生成全身轨迹。Biconmp用于在真正的四倍机器人上生成各种环状步态,其性能在不同的地形上进行了评估,对抗不同步态之间的不可预见的推动力并在线过渡。此外,提出了双孔在机器人上产生非平凡无环的全身动态运动的能力。同样的方法也被用来在人体机器人(TALOS)上产生MPC的各种动态运动,并在模拟中产生另一个四倍的机器人(Anymal)。最后,报告并讨论了对计划范围和频率对非线性MPC框架的影响的广泛经验分析。
translated by 谷歌翻译
在许多无人机应用中,为空中机器人计划的时间轨迹至关重要,例如救援任务和包装交付,这些应用程序近年来已经广泛研究。但是,它仍然涉及一些挑战,尤其是在将特殊任务要求纳入计划以及空中机器人的动态方面。在这项工作中,我们研究了一种案例,使空中操纵器应以时间优势的方式从移动的移动机器人中移交一个包裹。我们没有手动设置方法轨迹,这使得很难确定在动态范围内完成所需任务的最佳总行进时间,而是提出了一个优化框架,该框架将离散的力学和互补性约束(DMCC)结合在一起。在提出的框架中,系统动力学受到离散的拉格朗日力学的约束,该机械也根据我们的实验提供了可靠的估计结果。移交机会是根据所需的互补限制自动确定和安排的。最后,通过使用我们的自设计的空中操纵器进行数值模拟和硬件实验来验证所提出的框架的性能。
translated by 谷歌翻译
We present a generalised architecture for reactive mobile manipulation while a robot's base is in motion toward the next objective in a high-level task. By performing tasks on-the-move, overall cycle time is reduced compared to methods where the base pauses during manipulation. Reactive control of the manipulator enables grasping objects with unpredictable motion while improving robustness against perception errors, environmental disturbances, and inaccurate robot control compared to open-loop, trajectory-based planning approaches. We present an example implementation of the architecture and investigate the performance on a series of pick and place tasks with both static and dynamic objects and compare the performance to baseline methods. Our method demonstrated a real-world success rate of over 99%, failing in only a single trial from 120 attempts with a physical robot system. The architecture is further demonstrated on other mobile manipulator platforms in simulation. Our approach reduces task time by up to 48%, while also improving reliability, gracefulness, and predictability compared to existing architectures for mobile manipulation. See https://benburgesslimerick.github.io/ManipulationOnTheMove for supplementary materials.
translated by 谷歌翻译
在粗糙的地形上的动态运动需要准确的脚部放置,避免碰撞以及系统的动态不足的计划。在存在不完美且常常不完整的感知信息的情况下,可靠地优化此类动作和互动是具有挑战性的。我们提出了一个完整的感知,计划和控制管道,可以实时优化机器人所有自由度的动作。为了减轻地形所带来的数值挑战,凸出不平等约束的顺序被提取为立足性可行性的局部近似值,并嵌入到在线模型预测控制器中。每个高程映射预先计算了步骤性分类,平面分割和签名的距离场,以最大程度地减少优化过程中的计算工作。多次射击,实时迭代和基于滤波器的线路搜索的组合用于可靠地以高速率解决该法式问题。我们在模拟中的间隙,斜率和踏上石头的情况下验证了所提出的方法,并在Anymal四倍的平台上进行实验,从而实现了最新的动态攀登。
translated by 谷歌翻译
工业机器人操纵器(例如柯机)的应用可能需要在具有静态和非静态障碍物组合的环境中有效的在线运动计划。当可用的计算时间受到限制或无法完全产生解决方案时,现有的通用计划方法通常会产生较差的质量解决方案。我们提出了一个新的运动计划框架,旨在在用户定义的任务空间中运行,而不是机器人的工作空间,该框架有意将工作空间一般性交易,以计划和执行时间效率。我们的框架自动构建在线查询的轨迹库,类似于利用离线计算的以前方法。重要的是,我们的方法还提供了轨迹长度上有限的次级优势保证。关键的想法是建立称为$ \ epsilon $ -Gromov-Hausdorff近似值的近似异构体,以便在任务空间附近的点也很接近配置空间。这些边界关系进一步意味着可以平稳地串联轨迹,这使我们的框架能够解决批次查询方案,目的是找到最小长度的轨迹顺序,这些轨迹访问一组无序的目标。我们通过几种运动型配置评估了模拟框架,包括安装在移动基础上的操纵器。结果表明,我们的方法可实现可行的实时应用,并为扩展其功能提供了有趣的机会。
translated by 谷歌翻译
对于移动机器人而言,与铰接式对象的交互是一项具有挑战性但重要的任务。为了应对这一挑战,我们提出了一条新型的闭环控制管道,该管道将负担能力估计的操纵先验与基于采样的全身控制相结合。我们介绍了完全反映了代理的能力和体现的代理意识提供的概念,我们表明它们的表现优于其最先进的对应物,这些对应物仅以最终效果的几何形状为条件。此外,发现闭环负担推论使代理可以将任务分为多个非连续运动,并从失败和意外状态中恢复。最后,管道能够执行长途移动操作任务,即在现实世界中开放和关闭烤箱,成功率很高(开放:71%,关闭:72%)。
translated by 谷歌翻译
将包装从存储设施运送到消费者前门的物流通常采用高度专业的机器人,通常会将子任务分配到不同的系统,例如,操纵器臂进行分类和轮式车辆进行交付。最近的努力试图通过腿部和人形机器人进行统一的方法。但是,这些解决方案占据了大量空间,从而减少了可以适合运送车辆的包装数量。结果,这些庞大的机器人系统通常会降低可伸缩性和并行任务的潜力。在本文中,我们介绍了Limms(锁存智能模块化移动系统),以解决典型的最后一英里交付的操纵和交付部分,同时保持最小的空间足迹。 Limms是一种对称设计的,6型自由度(DOF)的类似于附件的机器人,两端都带有轮子和闩锁机构。通过将锁在表面上并锚定在一端,Limms可以充当传统的6多型操纵器臂。另一方面,多个lims可以锁在一个盒子上,并且像腿部机器人系统一样行为,包装是身体。在运输过程中,与传统的机器人系统相比,LIMM紧紧地折叠起来,占用的空间要少得多。一大批limms单元可以安装在单个送货工具内部,为新的交付优化和混合计划方法开放,从未做过。在本文中,使用硬件原型研究和呈现了LIMM的可行性,以及在典型的最后一英里交付中的一系列子任务的仿真结果。
translated by 谷歌翻译
Force modulation of robotic manipulators has been extensively studied for several decades. However, it is not yet commonly used in safety-critical applications due to a lack of accurate interaction contact modeling and weak performance guarantees - a large proportion of them concerning the modulation of interaction forces. This study presents a high-level framework for simultaneous trajectory optimization and force control of the interaction between a manipulator and soft environments, which is prone to external disturbances. Sliding friction and normal contact force are taken into account. The dynamics of the soft contact model and the manipulator are simultaneously incorporated in a trajectory optimizer to generate desired motion and force profiles. A constrained optimization framework based on Alternative Direction Method of Multipliers (ADMM) has been employed to efficiently generate real-time optimal control inputs and high-dimensional state trajectories in a Model Predictive Control fashion. Experimental validation of the model performance is conducted on a soft substrate with known material properties using a Cartesian space force control mode. Results show a comparison of ground truth and real-time model-based contact force and motion tracking for multiple Cartesian motions in the valid range of the friction model. It is shown that a contact model-based motion planner can compensate for frictional forces and motion disturbances and improve the overall motion and force tracking accuracy. The proposed high-level planner has the potential to facilitate the automation of medical tasks involving the manipulation of compliant, delicate, and deformable tissues.
translated by 谷歌翻译
本文着重于影响弹性的移动机器人的碰撞运动计划和控制的新兴范式转移,并开发了一个统一的层次结构框架,用于在未知和部分观察的杂物空间中导航。在较低级别上,我们开发了一种变形恢复控制和轨迹重新启动策略,该策略处理可能在本地运行时发生的碰撞。低级系统会积极检测碰撞(通过内部内置的移动机器人上的嵌入式霍尔效应传感器),使机器人能够从其内部恢复,并在本地调整后影响后的轨迹。然后,在高层,我们提出了一种基于搜索的计划算法,以确定如何最好地利用潜在的碰撞来改善某些指标,例如控制能量和计算时间。我们的方法建立在A*带有跳跃点的基础上。我们生成了一种新颖的启发式功能,并进行了碰撞检查和调整技术,从而使A*算法通过利用和利用可能的碰撞来更快地收敛到达目标。通过将全局A*算法和局部变形恢复和重新融合策略以及该框架的各个组件相结合而生成的整体分层框架在模拟和实验中都经过了广泛的测试。一项消融研究借鉴了与基于搜索的最先进的避免碰撞计划者(用于整体框架)的链接,以及基于搜索的避免碰撞和基于采样的碰撞 - 碰撞 - 全球规划师(对于更高的较高的碰撞 - 等级)。结果证明了我们的方法在未知环境中具有碰撞的运动计划和控制的功效,在2D中运行的一类撞击弹性机器人具有孤立的障碍物。
translated by 谷歌翻译
通常,地形几何形状是非平滑的,非线性的,非凸的,如果通过以机器人为中心的视觉单元感知,则似乎部分被遮住且嘈杂。这项工作介绍了能够实时处理上述问题的完整控制管道。我们制定了一个轨迹优化问题,该问题可以在基本姿势和立足点上共同优化,但要遵守高度图。为了避免收敛到不良的本地Optima,我们部署了逐步的优化技术。我们嵌入了一个紧凑的接触式自由稳定性标准,该标准与非平板地面公式兼容。直接搭配用作转录方法,导致一个非线性优化问题,可以在少于十毫秒内在线解决。为了在存在外部干扰的情况下增加鲁棒性,我们用动量观察者关闭跟踪环。我们的实验证明了爬楼梯,踏上垫脚石上的楼梯,并利用各种动态步态在缝隙上。
translated by 谷歌翻译
本文介绍了使用腿收割机进行精密收集任务的集成系统。我们的收割机在狭窄的GPS拒绝了森林环境中的自主导航和树抓取了一项挑战性的任务。提出了映射,本地化,规划和控制的策略,并集成到完全自主系统中。任务从使用定制的传感器模块开始使用人员映射感兴趣区域。随后,人类专家选择树木进行收获。然后将传感器模块安装在机器上并用于给定地图内的本地化。规划算法在单路径规划问题中搜索一个方法姿势和路径。我们设计了一个路径,后面的控制器利用腿的收割机的谈判粗糙地形的能力。在达接近姿势时,机器用通用夹具抓住一棵树。此过程重复操作员选择的所有树。我们的系统已经在与树干和自然森林中的测试领域进行了测试。据我们所知,这是第一次在现实环境中运行的全尺寸液压机上显示了这一自主权。
translated by 谷歌翻译
用于移动操作的机器人平台需要满足许多对许多现实世界应用的两个矛盾要求:需要紧凑的基础才能通过混乱的室内环境导航,而支撑需要足够大以防止翻滚或小费,尤其是在快速操纵期间有效载荷或与环境有力互动的操作。本文提出了一种新颖的机器人设计,该设计通过多功能足迹来满足这两种要求。当操纵重物时,它可以将其足迹重新配置为狭窄的配置。此外,其三角形配置可通过防止支撑开关来在不平坦的地面上进行高精度任务。提出了一种模型预测控制策略,该策略统一计划和控制,以同时导航,重新配置和操纵。它将任务空间目标转换为新机器人的全身运动计划。提出的设计已通过硬件原型进行了广泛的测试。足迹重新配置几乎可以完全消除操纵引起的振动。控制策略在实验室实验和现实世界的施工任务中被证明有效。
translated by 谷歌翻译
尽管移动操作在工业和服务机器人技术方面都重要,但仍然是一个重大挑战,因为它需要将最终效应轨迹的无缝整合与导航技能以及对长匹马的推理。现有方法难以控制大型配置空间,并导航动态和未知环境。在先前的工作中,我们建议将移动操纵任务分解为任务空间中最终效果的简化运动生成器,并将移动设备分解为训练有素的强化学习代理,以说明移动基础的运动基础,以说明运动的运动可行性。在这项工作中,我们引入了移动操作的神经导航(n $^2 $ m $^2 $),该导航将这种分解扩展到复杂的障碍环境,并使其能够解决现实世界中的广泛任务。最终的方法可以在未探索的环境中执行看不见的长马任务,同时立即对动态障碍和环境变化做出反应。同时,它提供了一种定义新的移动操作任务的简单方法。我们证明了我们提出的方法在多个运动学上多样化的移动操纵器上进行的广泛模拟和现实实验的能力。代码和视频可在http://mobile-rl.cs.uni-freiburg.de上公开获得。
translated by 谷歌翻译