神经网络在从颜色图像中提取几何信息方面取得了巨大成功。特别是,在现实世界中,单眼深度估计网络越来越可靠。在这项工作中,我们研究了这种单眼深度估计网络对半透明体积渲染图像的适用性。由于众所周知,在没有明确定义的表面的情况下,深度很难在体积的场景中定义,因此我们考虑在实践中出现的不同深度计算,并比较了在评估期间考虑不同程度的这些不同解释的最先进的单眼深度估计方法渲染中的不透明度。此外,我们研究了如何扩展这些网络以进一步获取颜色和不透明度信息,以便基于单个颜色图像创建场景的分层表示。该分层表示由空间分离的半透明间隔组成,这些间隔是复合到原始输入渲染的。在我们的实验中,我们表明,现有的单眼深度估计方法的适应性在半透明体积渲染上表现良好,该渲染在科学可视化领域具有多种应用。
translated by 谷歌翻译
现代计算机视觉已超越了互联网照片集的领域,并进入了物理世界,通过非结构化的环境引导配备摄像头的机器人和自动驾驶汽车。为了使这些体现的代理与现实世界对象相互作用,相机越来越多地用作深度传感器,重建了各种下游推理任务的环境。机器学习辅助的深度感知或深度估计会预测图像中每个像素的距离。尽管已经在深入估算中取得了令人印象深刻的进步,但仍然存在重大挑战:(1)地面真相深度标签很难大规模收集,(2)通常认为相机信息是已知的,但通常是不可靠的,并且(3)限制性摄像机假设很常见,即使在实践中使用了各种各样的相机类型和镜头。在本论文中,我们专注于放松这些假设,并描述将相机变成真正通用深度传感器的最终目标的贡献。
translated by 谷歌翻译
https://video-nerf.github.io Figure 1. Our method takes a single casually captured video as input and learns a space-time neural irradiance field. (Top) Sample frames from the input video. (Middle) Novel view images rendered from textured meshes constructed from depth maps. (Bottom) Our results rendered from the proposed space-time neural irradiance field.
translated by 谷歌翻译
建立新型观点综合的最近进展后,我们提出了改善单眼深度估计的应用。特别是,我们提出了一种在三个主要步骤中分开的新颖训练方法。首先,单眼深度网络的预测结果被扭转到额外的视点。其次,我们应用一个额外的图像综合网络,其纠正并提高了翘曲的RGB图像的质量。通过最小化像素-WISE RGB重建误差,该网络的输出需要尽可能类似地查看地面真实性视图。第三,我们将相同的单眼深度估计重新应用于合成的第二视图点,并确保深度预测与相关的地面真理深度一致。实验结果证明,我们的方法在Kitti和Nyu-Deaft-V2数据集上实现了最先进的或可比性,具有轻量级和简单的香草U-Net架构。
translated by 谷歌翻译
代表具有多个半透明彩色图层的场景是实时新型视图合成的流行和成功的选择。现有方法在平面或球形的规则间隔层上推断颜色和透明度值。在这项工作中,我们介绍了一种基于多个半透明层的新视图综合方法,具有场景适应的几何形状。我们的方法在两个阶段中介绍了立体对的这些表示。第一阶段从给定的一对视图中缩小了少数数据自适应层的几何形状。第二阶段为这些层的颜色和透明度值产生了新颖的视图合成的最终表示。重要的是,两个阶段都通过可差异化的渲染器连接,并以端到端的方式训练。在实验中,我们展示了所提出的方法在使用定期间隔的层上的优势,没有适应场景几何形状。尽管在渲染过程中较快的数量次数,但我们的方法也优于基于隐式几何表示的最近提出的IBRNET系统。查看https://samsunglabs.github.io/stereolayers的结果。
translated by 谷歌翻译
where the highest resolution is required, using facial performance capture as a case in point.
translated by 谷歌翻译
综合照片 - 现实图像和视频是计算机图形的核心,并且是几十年的研究焦点。传统上,使用渲染算法(如光栅化或射线跟踪)生成场景的合成图像,其将几何形状和材料属性的表示为输入。统称,这些输入定义了实际场景和呈现的内容,并且被称为场景表示(其中场景由一个或多个对象组成)。示例场景表示是具有附带纹理的三角形网格(例如,由艺术家创建),点云(例如,来自深度传感器),体积网格(例如,来自CT扫描)或隐式曲面函数(例如,截短的符号距离)字段)。使用可分辨率渲染损耗的观察结果的这种场景表示的重建被称为逆图形或反向渲染。神经渲染密切相关,并将思想与经典计算机图形和机器学习中的思想相结合,以创建用于合成来自真实观察图像的图像的算法。神经渲染是朝向合成照片现实图像和视频内容的目标的跨越。近年来,我们通过数百个出版物显示了这一领域的巨大进展,这些出版物显示了将被动组件注入渲染管道的不同方式。这种最先进的神经渲染进步的报告侧重于将经典渲染原则与学习的3D场景表示结合的方法,通常现在被称为神经场景表示。这些方法的一个关键优势在于它们是通过设计的3D-一致,使诸如新颖的视点合成捕获场景的应用。除了处理静态场景的方法外,我们还涵盖了用于建模非刚性变形对象的神经场景表示...
translated by 谷歌翻译
我们考虑了户外照明估算的挑战性问题,即影像逼真的虚拟对象将其插入照片中的目标。现有在室外照明估计的作品通常将场景照明简化为环境图,该图无法捕获室外场景中的空间变化的照明效果。在这项工作中,我们提出了一种神经方法,该方法可以从单个图像中估算5D HDR光场,以及一个可区分的对象插入公式,该公式可以通过基于图像的损失来端对端训练,从而鼓励现实主义。具体而言,我们设计了针对室外场景量身定制的混合照明表示,其中包含一个HDR Sky Dome,可处理太阳的极端强度,并具有体积的照明表示,该代表模拟了周围场景的空间变化外观。通过估计的照明,我们的阴影感知对象插入是完全可区分的,这使得对复合图像的对抗训练可以为照明预测提供其他监督信号。我们在实验上证明,混合照明表示比现有的室外照明估计方法更具性能。我们进一步显示了AR对象插入在自主驾驶应用程序中的好处,在对我们的增强数据进行培训时,我们可以在其中获得3D对象检测器的性能提高。
translated by 谷歌翻译
传统上,本征成像或内在图像分解被描述为将图像分解为两层:反射率,材料的反射率;和一个阴影,由光和几何之间的相互作用产生。近年来,深入学习技术已广泛应用,以提高这些分离的准确性。在本调查中,我们概述了那些在知名内在图像数据集和文献中使用的相关度量的结果,讨论了预测所需的内在图像分解的适用性。虽然Lambertian的假设仍然是许多方法的基础,但我们表明,对图像形成过程更复杂的物理原理组件的潜力越来越意识到,这是光学准确的材料模型和几何形状,更完整的逆轻型运输估计。考虑使用的前瞻和模型以及驾驶分解过程的学习架构和方法,我们将这些方法分类为分解的类型。考虑到最近神经,逆和可微分的渲染技术的进步,我们还提供了关于未来研究方向的见解。
translated by 谷歌翻译
深度完成旨在预测从深度传感器(例如Lidars)中捕获的极稀疏图的密集像素深度。它在各种应用中起着至关重要的作用,例如自动驾驶,3D重建,增强现实和机器人导航。基于深度学习的解决方案已经证明了这项任务的最新成功。在本文中,我们首次提供了全面的文献综述,可帮助读者更好地掌握研究趋势并清楚地了解当前的进步。我们通过通过对现有方法进行分类的新型分类法提出建议,研究网络体系结构,损失功能,基准数据集和学习策略的设计方面的相关研究。此外,我们在包括室内和室外数据集(包括室内和室外数据集)上进行了三个广泛使用基准测试的模型性能进行定量比较。最后,我们讨论了先前作品的挑战,并为读者提供一些有关未来研究方向的见解。
translated by 谷歌翻译
球形摄像机以整体方式捕获场景,并已用于房间布局估计。最近,随着适当数据集的可用性,从单个全向图像中的深度估计也取得了进展。尽管这两个任务是互补的,但很少有作品能够并行探索它们以提高室内几何感知,而那些这样做的人则依靠合成数据或使用过的小型数据集,因为很少有选项可供选择,包括两个布局。在真实场景中的注释和密集的深度图。这部分是由于需要对房间布局进行手动注释。在这项工作中,我们超越了此限制,并生成360几何视觉(360V)数据集,该数据集包括多种模式,多视图立体声数据并自动生成弱布局提示。我们还探索了两个任务之间的明确耦合,以将它们集成到经过单打的训练模型中。我们依靠基于深度的布局重建和基于布局的深度注意,这表明了两项任务的性能提高。通过使用单个360摄像机扫描房间,出现了便利和快速建筑规模3D扫描的机会。
translated by 谷歌翻译
神经隐式表示在新的视图合成和来自多视图图像的高质量3D重建方面显示了其有效性。但是,大多数方法都集中在整体场景表示上,但忽略了其中的各个对象,从而限制了潜在的下游应用程序。为了学习对象组合表示形式,一些作品将2D语义图作为训练中的提示,以掌握对象之间的差异。但是他们忽略了对象几何和实例语义信息之间的牢固联系,这导致了单个实例的不准确建模。本文提出了一个新颖的框架ObjectsDF,以在3D重建和对象表示中构建具有高保真度的对象复合神经隐式表示。观察常规音量渲染管道的歧义,我们通过组合单个对象的签名距离函数(SDF)来对场景进行建模,以发挥明确的表面约束。区分不同实例的关键是重新审视单个对象的SDF和语义标签之间的牢固关联。特别是,我们将语义信息转换为对象SDF的函数,并为场景和对象开发统一而紧凑的表示形式。实验结果表明,ObjectSDF框架在表示整体对象组合场景和各个实例方面的优越性。可以在https://qianyiwu.github.io/objectsdf/上找到代码
translated by 谷歌翻译
尽管在过去几年中取得了重大进展,但使用单眼图像进行深度估计仍然存在挑战。首先,训练度量深度预测模型的训练是不算气的,该预测模型可以很好地推广到主要由于训练数据有限的不同场景。因此,研究人员建立了大规模的相对深度数据集,这些数据集更容易收集。但是,由于使用相对深度数据训练引起的深度转移,现有的相对深度估计模型通常无法恢复准确的3D场景形状。我们在此处解决此问题,并尝试通过对大规模相对深度数据进行训练并估算深度转移来估计现场形状。为此,我们提出了一个两阶段的框架,该框架首先将深度预测到未知量表并从单眼图像转移,然后利用3D点云数据来预测深度​​移位和相机的焦距,使我们能够恢复恢复3D场景形状。由于两个模块是单独训练的,因此我们不需要严格配对的培训数据。此外,我们提出了图像级的归一化回归损失和基于正常的几何损失,以通过相对深度注释来改善训练。我们在九个看不见的数据集上测试我们的深度模型,并在零拍摄评估上实现最先进的性能。代码可用:https://git.io/depth
translated by 谷歌翻译
We present a novel neural surface reconstruction method called NeuralRoom for reconstructing room-sized indoor scenes directly from a set of 2D images. Recently, implicit neural representations have become a promising way to reconstruct surfaces from multiview images due to their high-quality results and simplicity. However, implicit neural representations usually cannot reconstruct indoor scenes well because they suffer severe shape-radiance ambiguity. We assume that the indoor scene consists of texture-rich and flat texture-less regions. In texture-rich regions, the multiview stereo can obtain accurate results. In the flat area, normal estimation networks usually obtain a good normal estimation. Based on the above observations, we reduce the possible spatial variation range of implicit neural surfaces by reliable geometric priors to alleviate shape-radiance ambiguity. Specifically, we use multiview stereo results to limit the NeuralRoom optimization space and then use reliable geometric priors to guide NeuralRoom training. Then the NeuralRoom would produce a neural scene representation that can render an image consistent with the input training images. In addition, we propose a smoothing method called perturbation-residual restrictions to improve the accuracy and completeness of the flat region, which assumes that the sampling points in a local surface should have the same normal and similar distance to the observation center. Experiments on the ScanNet dataset show that our method can reconstruct the texture-less area of indoor scenes while maintaining the accuracy of detail. We also apply NeuralRoom to more advanced multiview reconstruction algorithms and significantly improve their reconstruction quality.
translated by 谷歌翻译
作为许多自主驾驶和机器人活动的基本组成部分,如自我运动估计,障碍避免和场景理解,单眼深度估计(MDE)引起了计算机视觉和机器人社区的极大关注。在过去的几十年中,已经开发了大量方法。然而,据我们所知,对MDE没有全面调查。本文旨在通过审查1970年至2021年之间发布的197个相关条款来弥补这一差距。特别是,我们为涵盖各种方法的MDE提供了全面的调查,介绍了流行的绩效评估指标并汇总公开的数据集。我们还总结了一些代表方法的可用开源实现,并比较了他们的表演。此外,我们在一些重要的机器人任务中审查了MDE的应用。最后,我们通过展示一些有希望的未来研究方向来结束本文。预计本调查有助于读者浏览该研究领域。
translated by 谷歌翻译
神经场景表示,例如神经辐射场(NERF),基于训练多层感知器(MLP),使用一组具有已知姿势的彩色图像。现在,越来越多的设备产生RGB-D(颜色 +深度)信息,这对于各种任务非常重要。因此,本文的目的是通过将深度信息与颜色图像结合在一起,研究这些有希望的隐式表示可以进行哪些改进。特别是,最近建议的MIP-NERF方法使用圆锥形的圆丝而不是射线进行音量渲染,它使人们可以考虑具有距离距离摄像头中心距离的像素的不同区域。所提出的方法还模拟了深度不确定性。这允许解决基于NERF的方法的主要局限性,包括提高几何形状的准确性,减少伪像,更快的训练时间和缩短预测时间。实验是在众所周知的基准场景上进行的,并且比较在场景几何形状和光度重建中的准确性提高,同时将训练时间减少了3-5次。
translated by 谷歌翻译
Point of View & TimeFigure 1: We propose D-NeRF, a method for synthesizing novel views, at an arbitrary point in time, of dynamic scenes with complex non-rigid geometries. We optimize an underlying deformable volumetric function from a sparse set of input monocular views without the need of ground-truth geometry nor multi-view images. The figure shows two scenes under variable points of view and time instances synthesised by the proposed model.
translated by 谷歌翻译
Fast and easy handheld capture with guideline: closest object moves at most D pixels between views Promote sampled views to local light field via layered scene representation Blend neighboring local light fields to render novel views
translated by 谷歌翻译
神经隐式表面已成为多视图3D重建的重要技术,但它们的准确性仍然有限。在本文中,我们认为这来自难以学习和呈现具有神经网络的高频纹理。因此,我们建议在不同视图中添加标准神经渲染优化直接照片一致性术语。直观地,我们优化隐式几何体,以便以一致的方式扭曲彼此的视图。我们证明,两个元素是这种方法成功的关键:(i)使用沿着每条光线的预测占用和3D点的预测占用和法线来翘曲整个补丁,并用稳健的结构相似度测量它们的相似性; (ii)以这种方式处理可见性和遮挡,使得不正确的扭曲不会给出太多的重要性,同时鼓励重建尽可能完整。我们评估了我们的方法,在标准的DTU和EPFL基准上被称为NeuralWarp,并表明它在两个数据集上以超过20%重建的艺术态度优于未经监督的隐式表面。
translated by 谷歌翻译
传统上,来自摆姿势的图像的3D室内场景重建分为两个阶段:人均深度估计,然后进行深度合并和表面重建。最近,出现了一个直接在最终3D体积特征空间中进行重建的方法家族。尽管这些方法显示出令人印象深刻的重建结果,但它们依赖于昂贵的3D卷积层,从而限制了其在资源受限环境中的应用。在这项工作中,我们回到了传统的路线,并展示着专注于高质量的多视图深度预测如何使用简单的现成深度融合来高度准确的3D重建。我们提出了一个简单的最先进的多视图深度估计器,其中有两个主要贡献:1)精心设计的2D CNN,该2D CNN利用强大的图像先验以及平面扫描特征量和几何损失,并结合2)将密钥帧和几何元数据集成到成本量中,这允许知情的深度平面评分。我们的方法在当前的最新估计中获得了重要的领先优势,以进行深度估计,并在扫描仪和7个镜头上进行3D重建,但仍允许在线实时实时低音重建。代码,模型和结果可在https://nianticlabs.github.io/simplerecon上找到
translated by 谷歌翻译