Conventional unsupervised domain adaptation (UDA) assumes that training data are sampled from a single domain. This neglects the more practical scenario where training data are collected from multiple sources, requiring multi-source domain adaptation. We make three major contributions towards addressing this problem. First, we collect and annotate by far the largest UDA dataset, called DomainNet, which contains six domains and about 0.6 million images distributed among 345 categories, addressing the gap in data availability for multi-source UDA research. Second, we propose a new deep learning approach, Moment Matching for Multi-Source Domain Adaptation (M 3 SDA), which aims to transfer knowledge learned from multiple labeled source domains to an unlabeled target domain by dynamically aligning moments of their feature distributions. Third, we provide new theoretical insights specifically for moment matching approaches in both single and multiple source domain adaptation. Extensive experiments are conducted to demonstrate the power of our new dataset in benchmarking state-of-the-art multi-source domain adaptation methods, as well as the advantage of our proposed model. Dataset and Code are available at http://ai.bu.edu/M3SDA/
translated by 谷歌翻译
对抗性学习策略在处理单源域适应(DA)问题时表现出显着的性能,并且最近已应用于多源DA(MDA)问题。虽然大多数现有的MDA策略依赖于多个域歧视员设置,但其对潜伏空间表示的影响已经不知识。在这里,我们采用了一种信息 - 理论方法来识别和解决MDA上多个域鉴别器的潜在不利影响:域歧视信息的解体,有限的计算可扩展性以及培训期间损失梯度的大方差。我们在信息正规化的背景下通过情况进行对抗性DA来检查上述问题。这还提供了使用单一和统一域鉴别器的理论正当理由。基于这个想法,我们实施了一种名为多源信息正规化适应网络(MIAN)的新型神经结构。大规模实验表明,尽管其结构简洁,可靠,可显着优于其他最先进的方法。
translated by 谷歌翻译
虽然无监督的域适应(UDA)算法,即,近年来只有来自源域的标记数据,大多数算法和理论结果侧重于单源无监督域适应(SUDA)。然而,在实际情况下,标记的数据通常可以从多个不同的源收集,并且它们可能不仅不同于目标域而且彼此不同。因此,来自多个源的域适配器不应以相同的方式进行建模。最近基于深度学习的多源无监督域适应(Muda)算法专注于通过在通用特征空间中的所有源极和目标域的分布对齐来提取所有域的公共域不变表示。但是,往往很难提取Muda中所有域的相同域不变表示。此外,这些方法匹配分布而不考虑类之间的域特定的决策边界。为了解决这些问题,我们提出了一个新的框架,具有两个对准阶段的Muda,它不仅将每对源和目标域的分布对齐,而且还通过利用域特定的分类器的输出对准决策边界。广泛的实验表明,我们的方法可以对图像分类的流行基准数据集实现显着的结果。
translated by 谷歌翻译
Domain adaptation aims at generalizing a high-performance learner on a target domain via utilizing the knowledge distilled from a source domain which has a different but related data distribution. One solution to domain adaptation is to learn domain invariant feature representations while the learned representations should also be discriminative in prediction. To learn such representations, domain adaptation frameworks usually include a domain invariant representation learning approach to measure and reduce the domain discrepancy, as well as a discriminator for classification. Inspired by Wasserstein GAN, in this paper we propose a novel approach to learn domain invariant feature representations, namely Wasserstein Distance Guided Representation Learning (WD-GRL). WDGRL utilizes a neural network, denoted by the domain critic, to estimate empirical Wasserstein distance between the source and target samples and optimizes the feature extractor network to minimize the estimated Wasserstein distance in an adversarial manner. The theoretical advantages of Wasserstein distance for domain adaptation lie in its gradient property and promising generalization bound. Empirical studies on common sentiment and image classification adaptation datasets demonstrate that our proposed WDGRL outperforms the state-of-the-art domain invariant representation learning approaches.
translated by 谷歌翻译
虽然在许多域内生成并提供了大量的未标记数据,但对视觉数据的自动理解的需求高于以往任何时候。大多数现有机器学习模型通常依赖于大量标记的训练数据来实现高性能。不幸的是,在现实世界的应用中,不能满足这种要求。标签的数量有限,手动注释数据昂贵且耗时。通常需要将知识从现有标记域传输到新域。但是,模型性能因域之间的差异(域移位或数据集偏差)而劣化。为了克服注释的负担,域适应(DA)旨在在将知识从一个域转移到另一个类似但不同的域中时减轻域移位问题。无监督的DA(UDA)处理标记的源域和未标记的目标域。 UDA的主要目标是减少标记的源数据和未标记的目标数据之间的域差异,并在培训期间在两个域中学习域不变的表示。在本文中,我们首先定义UDA问题。其次,我们从传统方法和基于深度学习的方法中概述了不同类别的UDA的最先进的方法。最后,我们收集常用的基准数据集和UDA最先进方法的报告结果对视觉识别问题。
translated by 谷歌翻译
大多数现有的多源域适配(MSDA)方法通过特征分布对准最小化多个源 - 目标域对之间的距离,从单个源设置借用的方法。但是,对于不同的源极域,对齐成对特征分布是具有挑战性的,甚至可以对MSDA进行反效率。在本文中,我们介绍了一种新颖的方法:可转让的属性学习。动机很简单:虽然不同的域可以具有急剧不同的视野,但它们包含相同的类类,其特征在一起相同的属性;因此,MSDA模型应该专注于学习目标域的最可转换的属性。采用这种方法,我们提出了域名关注一致性网络,称为DAC网。关键设计是一个特征通道注意模块,旨在识别可转移功能(属性)。重要的是,注意模块受到一致性损失的监督,这对源极和目标域之间的信道注意权重的分布施加。此外,为了促进对目标数据的鉴别特征学习,我们将伪标记与类紧凑性丢失相结合,以最小化目标特征和分类器的权重向量之间的距离。在三个MSDA基准测试中进行了广泛的实验表明,我们的DAC-NET在所有这些中实现了新的最新性能。
translated by 谷歌翻译
In this work, we present a method for unsupervised domain adaptation. Many adversarial learning methods train domain classifier networks to distinguish the features as either a source or target and train a feature generator network to mimic the discriminator. Two problems exist with these methods. First, the domain classifier only tries to distinguish the features as a source or target and thus does not consider task-specific decision boundaries between classes. Therefore, a trained generator can generate ambiguous features near class boundaries. Second, these methods aim to completely match the feature distributions between different domains, which is difficult because of each domain's characteristics.To solve these problems, we introduce a new approach that attempts to align distributions of source and target by utilizing the task-specific decision boundaries. We propose to maximize the discrepancy between two classifiers' outputs to detect target samples that are far from the support of the source. A feature generator learns to generate target features near the support to minimize the discrepancy. Our method outperforms other methods on several datasets of image classification and semantic segmentation. The codes are available at https://github. com/mil-tokyo/MCD_DA
translated by 谷歌翻译
Deep learning has produced state-of-the-art results for a variety of tasks. While such approaches for supervised learning have performed well, they assume that training and testing data are drawn from the same distribution, which may not always be the case. As a complement to this challenge, single-source unsupervised domain adaptation can handle situations where a network is trained on labeled data from a source domain and unlabeled data from a related but different target domain with the goal of performing well at test-time on the target domain. Many single-source and typically homogeneous unsupervised deep domain adaptation approaches have thus been developed, combining the powerful, hierarchical representations from deep learning with domain adaptation to reduce reliance on potentially-costly target data labels. This survey will compare these approaches by examining alternative methods, the unique and common elements, results, and theoretical insights. We follow this with a look at application areas and open research directions.
translated by 谷歌翻译
无监督域适应(UDA)旨在将知识从相关但不同的良好标记的源域转移到新的未标记的目标域。大多数现有的UDA方法需要访问源数据,因此当数据保密而不相配在隐私问题时,不适用。本文旨在仅使用培训的分类模型来解决现实设置,而不是访问源数据。为了有效地利用适应源模型,我们提出了一种新颖的方法,称为源假设转移(拍摄),其通过将目标数据特征拟合到冻结源分类模块(表示分类假设)来学习目标域的特征提取模块。具体而言,拍摄挖掘出于特征提取模块的信息最大化和自我监督学习,以确保目标特征通过同一假设与看不见的源数据的特征隐式对齐。此外,我们提出了一种新的标签转移策略,它基于预测的置信度(标签信息),然后采用半监督学习来将目标数据分成两个分裂,然后提高目标域中的较为自信预测的准确性。如果通过拍摄获得预测,我们表示标记转移为拍摄++。关于两位数分类和对象识别任务的广泛实验表明,拍摄和射击++实现了与最先进的结果超越或相当的结果,展示了我们对各种视域适应问题的方法的有效性。代码可用于\ url {https://github.com/tim-learn/shot-plus}。
translated by 谷歌翻译
深度学习(DL)是各种计算机视觉任务中使用的主要方法,因为它在许多任务上取得了相关结果。但是,在具有部分或没有标记数据的实际情况下,DL方法也容易出现众所周知的域移位问题。多源无监督的域适应性(MSDA)旨在通过从一袋源模型中分配弱知识来学习未标记域的预测指标。但是,大多数作品进行域适应性仅利用提取的特征并从损失函数设计的角度降低其域的转移。在本文中,我们认为仅基于域级特征处理域移动不足,但是在功能空间上对此类信息进行对齐也是必不可少的。与以前的工作不同,我们专注于网络设计,并建议将多源版本的域对齐层(MS-DIAL)嵌入预测变量的不同级别。这些层旨在匹配不同域之间的特征分布,并且可以轻松地应用于各种MSDA方法。为了显示我们方法的鲁棒性,我们考虑了两个具有挑战性的情况:数字识别和对象分类,进行了广泛的实验评估。实验结果表明,我们的方法可以改善最新的MSDA方法,从而在其分类精度上获得 +30.64%的相对增长。
translated by 谷歌翻译
在计算机视觉中,面对域转移是很常见的:具有相同类但采集条件不同的图像。在域适应性(DA)中,人们希望使用源标记的图像对未标记的目标图像进行分类。不幸的是,在源训练集中训练的深度神经网络在不属于训练领域的目标图像上表现不佳。改善这些性能的一种策略是使用最佳传输(OT)在嵌入式空间中对齐源和目标图像分布。但是,OT会导致负转移,即与不同标签的样品对齐,这导致过度拟合,尤其是在域之间存在标签移动的情况下。在这项工作中,我们通过将其解释为针对目标图像的嘈杂标签分配来减轻负相位。然后,我们通过适当的正则化来减轻其效果。我们建议将混合正则化\ citep {zhang2018mixup}与噪音标签强大的损失,以提高域的适应性性能。我们在一项广泛的消融研究中表明,这两种技术的结合对于提高性能至关重要。最后,我们在几个基准和现实世界DA问题上评估了称为\ textsc {mixunbot}的方法。
translated by 谷歌翻译
Top-performing deep architectures are trained on massive amounts of labeled data. In the absence of labeled data for a certain task, domain adaptation often provides an attractive option given that labeled data of similar nature but from a different domain (e.g. synthetic images) are available. Here, we propose a new approach to domain adaptation in deep architectures that can be trained on large amount of labeled data from the source domain and large amount of unlabeled data from the target domain (no labeled targetdomain data is necessary).As the training progresses, the approach promotes the emergence of "deep" features that are (i) discriminative for the main learning task on the source domain and (ii) invariant with respect to the shift between the domains. We show that this adaptation behaviour can be achieved in almost any feed-forward model by augmenting it with few standard layers and a simple new gradient reversal layer. The resulting augmented architecture can be trained using standard backpropagation.Overall, the approach can be implemented with little effort using any of the deep-learning packages. The method performs very well in a series of image classification experiments, achieving adaptation effect in the presence of big domain shifts and outperforming previous state-ofthe-art on Office datasets.
translated by 谷歌翻译
在本文中,我们提出了一种使用域鉴别特征模块的双模块网络架构,以鼓励域不变的特征模块学习更多域不变的功能。该建议的架构可以应用于任何利用域不变功能的任何模型,用于无监督域适应,以提高其提取域不变特征的能力。我们在作为代表性算法的神经网络(DANN)模型的区域 - 对抗训练进行实验。在培训过程中,我们为两个模块提供相同的输入,然后分别提取它们的特征分布和预测结果。我们提出了差异损失,以找到预测结果的差异和两个模块之间的特征分布。通过对抗训练来最大化其特征分布和最小化其预测结果的差异,鼓励两个模块分别学习更多域歧视和域不变特征。进行了广泛的比较评估,拟议的方法在大多数无监督的域适应任务中表现出最先进的。
translated by 谷歌翻译
We introduce a new representation learning approach for domain adaptation, in which data at training and test time come from similar but different distributions. Our approach is directly inspired by the theory on domain adaptation suggesting that, for effective domain transfer to be achieved, predictions must be made based on features that cannot discriminate between the training (source) and test (target) domains.The approach implements this idea in the context of neural network architectures that are trained on labeled data from the source domain and unlabeled data from the target domain (no labeled target-domain data is necessary). As the training progresses, the approach promotes the emergence of features that are (i) discriminative for the main learning task on the source domain and (ii) indiscriminate with respect to the shift between the domains. We show that this adaptation behaviour can be achieved in almost any feed-forward model by augmenting it with few standard layers and a new gradient reversal layer. The resulting augmented architecture can be trained using standard backpropagation and stochastic gradient descent, and can thus be implemented with little effort using any of the deep learning packages.We demonstrate the success of our approach for two distinct classification problems (document sentiment analysis and image classification), where state-of-the-art domain adaptation performance on standard benchmarks is achieved. We also validate the approach for descriptor learning task in the context of person re-identification application.
translated by 谷歌翻译
Adversarial learning has been embedded into deep networks to learn disentangled and transferable representations for domain adaptation. Existing adversarial domain adaptation methods may not effectively align different domains of multimodal distributions native in classification problems. In this paper, we present conditional adversarial domain adaptation, a principled framework that conditions the adversarial adaptation models on discriminative information conveyed in the classifier predictions. Conditional domain adversarial networks (CDANs) are designed with two novel conditioning strategies: multilinear conditioning that captures the crosscovariance between feature representations and classifier predictions to improve the discriminability, and entropy conditioning that controls the uncertainty of classifier predictions to guarantee the transferability. With theoretical guarantees and a few lines of codes, the approach has exceeded state-of-the-art results on five datasets.
translated by 谷歌翻译
Due to the ability of deep neural nets to learn rich representations, recent advances in unsupervised domain adaptation have focused on learning domain-invariant features that achieve a small error on the source domain. The hope is that the learnt representation, together with the hypothesis learnt from the source domain, can generalize to the target domain. In this paper, we first construct a simple counterexample showing that, contrary to common belief, the above conditions are not sufficient to guarantee successful domain adaptation. In particular, the counterexample exhibits conditional shift: the class-conditional distributions of input features change between source and target domains. To give a sufficient condition for domain adaptation, we propose a natural and interpretable generalization upper bound that explicitly takes into account the aforementioned shift. Moreover, we shed new light on the problem by proving an information-theoretic lower bound on the joint error of any domain adaptation method that attempts to learn invariant representations. Our result characterizes a fundamental tradeoff between learning invariant representations and achieving small joint error on both domains when the marginal label distributions differ from source to target. Finally, we conduct experiments on real-world datasets that corroborate our theoretical findings. We believe these insights are helpful in guiding the future design of domain adaptation and representation learning algorithms.
translated by 谷歌翻译
This paper addresses the problem of unsupervised domain adaption from theoretical and algorithmic perspectives. Existing domain adaptation theories naturally imply minimax optimization algorithms, which connect well with the domain adaptation methods based on adversarial learning. However, several disconnections still exist and form the gap between theory and algorithm. We extend previous theories (Mansour et al., 2009c;Ben-David et al., 2010) to multiclass classification in domain adaptation, where classifiers based on the scoring functions and margin loss are standard choices in algorithm design. We introduce Margin Disparity Discrepancy, a novel measurement with rigorous generalization bounds, tailored to the distribution comparison with the asymmetric margin loss, and to the minimax optimization for easier training. Our theory can be seamlessly transformed into an adversarial learning algorithm for domain adaptation, successfully bridging the gap between theory and algorithm. A series of empirical studies show that our algorithm achieves the state of the art accuracies on challenging domain adaptation tasks.
translated by 谷歌翻译
In this paper, we investigate a challenging unsupervised domain adaptation setting -unsupervised model adaptation. We aim to explore how to rely only on unlabeled target data to improve performance of an existing source prediction model on the target domain, since labeled source data may not be available in some real-world scenarios due to data privacy issues. For this purpose, we propose a new framework, which is referred to as collaborative class conditional generative adversarial net to bypass the dependence on the source data. Specifically, the prediction model is to be improved through generated target-style data, which provides more accurate guidance for the generator. As a result, the generator and the prediction model can collaborate with each other without source data. Furthermore, due to the lack of supervision from source data, we propose a weight constraint that encourages similarity to the source model. A clustering-based regularization is also introduced to produce more discriminative features in the target domain. Compared to conventional domain adaptation methods, our model achieves superior performance on multiple adaptation tasks with only unlabeled target data, which verifies its effectiveness in this challenging setting.
translated by 谷歌翻译
很少有射击学习(FSL)旨在通过利用基本数据集的先验知识来识别只有几个支持样本的新奇查询。在本文中,我们考虑了FSL中的域移位问题,并旨在解决支持集和查询集之间的域间隙。不同于以前考虑基础和新颖类之间的域移位的跨域FSL工作(CD-FSL),新问题称为跨域跨集FSL(CDSC-FSL),不仅需要很少的学习者适应新的领域,但也要在每个新颖类中的不同领域之间保持一致。为此,我们提出了一种新颖的方法,即Stabpa,学习原型紧凑和跨域对准表示,以便可以同时解决域的转移和很少的学习学习。我们对分别从域和办公室数据集构建的两个新的CDCS-FSL基准进行评估。值得注意的是,我们的方法的表现优于多个详细的基线,例如,在域内,将5-shot精度提高了6.0点。代码可从https://github.com/wentaochen0813/cdcs-fsl获得
translated by 谷歌翻译
Unsupervised domain adaptation (UDA) aims to transfer knowledge from a well-labeled source domain to a different but related unlabeled target domain with identical label space. Currently, the main workhorse for solving UDA is domain alignment, which has proven successful. However, it is often difficult to find an appropriate source domain with identical label space. A more practical scenario is so-called partial domain adaptation (PDA) in which the source label set or space subsumes the target one. Unfortunately, in PDA, due to the existence of the irrelevant categories in the source domain, it is quite hard to obtain a perfect alignment, thus resulting in mode collapse and negative transfer. Although several efforts have been made by down-weighting the irrelevant source categories, the strategies used tend to be burdensome and risky since exactly which irrelevant categories are unknown. These challenges motivate us to find a relatively simpler alternative to solve PDA. To achieve this, we first provide a thorough theoretical analysis, which illustrates that the target risk is bounded by both model smoothness and between-domain discrepancy. Considering the difficulty of perfect alignment in solving PDA, we turn to focus on the model smoothness while discard the riskier domain alignment to enhance the adaptability of the model. Specifically, we instantiate the model smoothness as a quite simple intra-domain structure preserving (IDSP). To our best knowledge, this is the first naive attempt to address the PDA without domain alignment. Finally, our empirical results on multiple benchmark datasets demonstrate that IDSP is not only superior to the PDA SOTAs by a significant margin on some benchmarks (e.g., +10% on Cl->Rw and +8% on Ar->Rw ), but also complementary to domain alignment in the standard UDA
translated by 谷歌翻译