在社交媒体上传播谣言对社会构成了重要威胁,因此最近提出了各种谣言检测技术。然而,现有的工作重点是\ emph {what}实体构成谣言,但几乎没有支持理解\ emph {为什么}实体已被归类为这样。这样可以防止对检测的谣言以及对策设计的有效评估。在这项工作中,我们认为,可以通过过去检测到的相关谣言的例子来给出检测到的谣言的解释。一系列类似的谣言有助于用户概括,即了解控制谣言的探测的特性。由于通常使用特征声明的图表对社交媒体的谣言传播通常是建模的,因此我们提出了一种逐个示例的方法,鉴于谣言图,它从过去的谣言中提取了$ k $最相似和最多的子图。挑战是所有计算都需要快速评估图之间的相似性。为了在流式设置中实现该方法的有效和适应性实现,我们提出了一种新颖的图表学习技术,并报告了实施注意事项。我们的评估实验表明,我们的方法在为各种谣言传播行为提供有意义的解释方面优于基线技术。
translated by 谷歌翻译
本次调查绘制了用于分析社交媒体数据的生成方法的研究状态的广泛的全景照片(Sota)。它填补了空白,因为现有的调查文章在其范围内或被约会。我们包括两个重要方面,目前正在挖掘和建模社交媒体的重要性:动态和网络。社会动态对于了解影响影响或疾病的传播,友谊的形成,友谊的形成等,另一方面,可以捕获各种复杂关系,提供额外的洞察力和识别否则将不会被注意的重要模式。
translated by 谷歌翻译
社交机器人被称为社交网络上的自动帐户,这些帐户试图像人类一样行事。尽管图形神经网络(GNNS)已大量应用于社会机器人检测领域,但大量的领域专业知识和先验知识大量参与了最先进的方法,以设计专门的神经网络体系结构,以设计特定的神经网络体系结构。分类任务。但是,在模型设计中涉及超大的节点和网络层,通常会导致过度平滑的问题和缺乏嵌入歧视。在本文中,我们提出了罗斯加斯(Rosgas),这是一种新颖的加强和自我监督的GNN Architecture搜索框架,以适应性地指出了最合适的多跳跃社区和GNN体系结构中的层数。更具体地说,我们将社交机器人检测问题视为以用户为中心的子图嵌入和分类任务。我们利用异构信息网络来通过利用帐户元数据,关系,行为特征和内容功能来展示用户连接。 Rosgas使用多代理的深钢筋学习(RL)机制来导航最佳邻域和网络层的搜索,以分别学习每个目标用户的子图嵌入。开发了一种用于加速RL训练过程的最接近的邻居机制,Rosgas可以借助自我监督的学习来学习更多的判别子图。 5个Twitter数据集的实验表明,Rosgas在准确性,训练效率和稳定性方面优于最先进的方法,并且在处理看不见的样本时具有更好的概括。
translated by 谷歌翻译
即使机器学习算法已经在数据科学中发挥了重要作用,但许多当前方法对输入数据提出了不现实的假设。由于不兼容的数据格式,或数据集中的异质,分层或完全缺少的数据片段,因此很难应用此类方法。作为解决方案,我们提出了一个用于样本表示,模型定义和培训的多功能,统一的框架,称为“ Hmill”。我们深入审查框架构建和扩展的机器学习的多个范围范式。从理论上讲,为HMILL的关键组件的设计合理,我们将通用近似定理的扩展显示到框架中实现的模型所实现的所有功能的集合。本文还包含有关我们实施中技术和绩效改进的详细讨论,该讨论将在MIT许可下发布供下载。该框架的主要资产是其灵活性,它可以通过相同的工具对不同的现实世界数据源进行建模。除了单独观察到每个对象的一组属性的标准设置外,我们解释了如何在框架中实现表示整个对象系统的图表中的消息推断。为了支持我们的主张,我们使用框架解决了网络安全域的三个不同问题。第一种用例涉及来自原始网络观察结果的IoT设备识别。在第二个问题中,我们研究了如何使用以有向图表示的操作系统的快照可以对恶意二进制文件进行分类。最后提供的示例是通过网络中实体之间建模域黑名单扩展的任务。在所有三个问题中,基于建议的框架的解决方案可实现与专业方法相当的性能。
translated by 谷歌翻译
大多数人类活动都需要在正式或非正式团队内部和跨部队进行合作。我们对团队所花费的合作努力与他们的表现有何关系的理解仍然是一个辩论问题。团队合作导致了一个高度相互联系的生态系统,这些生态系统可能是重叠的组件,其中与团队成员和其他团队进行互动执行任务。为了解决这个问题,我们提出了一个图形神经网络模型,旨在预测团队的性能,同时确定确定这种结果的驱动程序。特别是,该模型基于三个架构渠道:拓扑,中心性和上下文,它们捕获了不同因素可能塑造了团队的成功。我们赋予该模型具有两种注意机制,以提高模型性能并允许解释性。第一种机制允许查明团队内部的关键成员。第二种机制使我们能够量化三个驱动程序在确定结果绩效方面的贡献。我们在广泛的域上测试模型性能,其表现优于所考虑的大多数经典和神经基准。此外,我们包括专门设计的合成数据集,以验证该模型如何删除我们的模型胜过基线的预期属性。
translated by 谷歌翻译
Graph is an important data representation which appears in a wide diversity of real-world scenarios. Effective graph analytics provides users a deeper understanding of what is behind the data, and thus can benefit a lot of useful applications such as node classification, node recommendation, link prediction, etc. However, most graph analytics methods suffer the high computation and space cost. Graph embedding is an effective yet efficient way to solve the graph analytics problem. It converts the graph data into a low dimensional space in which the graph structural information and graph properties are maximumly preserved. In this survey, we conduct a comprehensive review of the literature in graph embedding. We first introduce the formal definition of graph embedding as well as the related concepts. After that, we propose two taxonomies of graph embedding which correspond to what challenges exist in different graph embedding problem settings and how the existing work address these challenges in their solutions. Finally, we summarize the applications that graph embedding enables and suggest four promising future research directions in terms of computation efficiency, problem settings, techniques and application scenarios.
translated by 谷歌翻译
Machine Unerning是在收到删除请求时从机器学习(ML)模型中删除某些培训数据的影响的过程。虽然直接而合法,但从划痕中重新训练ML模型会导致高计算开销。为了解决这个问题,在图像和文本数据的域中提出了许多近似算法,其中SISA是最新的解决方案。它将训练集随机分配到多个碎片中,并为每个碎片训练一个组成模型。但是,将SISA直接应用于图形数据可能会严重损害图形结构信息,从而导致的ML模型实用程序。在本文中,我们提出了Grapheraser,这是一种针对图形数据量身定制的新型机器学习框架。它的贡献包括两种新型的图形分区算法和一种基于学习的聚合方法。我们在五个现实世界图数据集上进行了广泛的实验,以说明Grapheraser的学习效率和模型实用程序。它可以实现2.06 $ \ times $(小数据集)至35.94 $ \ times $(大数据集)未学习时间的改进。另一方面,Grapheraser的实现最高62.5美元\%$更高的F1分数,我们提出的基于学习的聚合方法可达到高达$ 112 \%$ $ F1分数。 github.com/minchen00/graph-unlearning}。}。}
translated by 谷歌翻译
在过去十年中,图形内核引起了很多关注,并在结构化数据上发展成为一种快速发展的学习分支。在过去的20年中,该领域发生的相当大的研究活动导致开发数十个图形内核,每个图形内核都对焦于图形的特定结构性质。图形内核已成功地成功地在广泛的域中,从社交网络到生物信息学。本调查的目标是提供图形内核的文献的统一视图。特别是,我们概述了各种图形内核。此外,我们对公共数据集的几个内核进行了实验评估,并提供了比较研究。最后,我们讨论图形内核的关键应用,并概述了一些仍有待解决的挑战。
translated by 谷歌翻译
Influence Maximization (IM) is a classical combinatorial optimization problem, which can be widely used in mobile networks, social computing, and recommendation systems. It aims at selecting a small number of users such that maximizing the influence spread across the online social network. Because of its potential commercial and academic value, there are a lot of researchers focusing on studying the IM problem from different perspectives. The main challenge comes from the NP-hardness of the IM problem and \#P-hardness of estimating the influence spread, thus traditional algorithms for overcoming them can be categorized into two classes: heuristic algorithms and approximation algorithms. However, there is no theoretical guarantee for heuristic algorithms, and the theoretical design is close to the limit. Therefore, it is almost impossible to further optimize and improve their performance. With the rapid development of artificial intelligence, the technology based on Machine Learning (ML) has achieved remarkable achievements in many fields. In view of this, in recent years, a number of new methods have emerged to solve combinatorial optimization problems by using ML-based techniques. These methods have the advantages of fast solving speed and strong generalization ability to unknown graphs, which provide a brand-new direction for solving combinatorial optimization problems. Therefore, we abandon the traditional algorithms based on iterative search and review the recent development of ML-based methods, especially Deep Reinforcement Learning, to solve the IM problem and other variants in social networks. We focus on summarizing the relevant background knowledge, basic principles, common methods, and applied research. Finally, the challenges that need to be solved urgently in future IM research are pointed out.
translated by 谷歌翻译
在线零售平台,积极检测交易风险至关重要,以提高客户体验,并尽量减少财务损失。在这项工作中,我们提出了一种可解释的欺诈行为预测框架,主要由探测器和解释器组成。 Xfraud探测器可以有效和有效地预测进货交易的合法性。具体地,它利用异构图形神经网络来从事务日志中的信息的非渗透键入实体中学习表达式表示。 Xfraud中的解释器可以从图表中生成有意义和人性化的解释,以便于业务部门中的进一步进程。在我们对具有高达11亿节点和37亿边缘的实际交易网络上的Xfraud实验中,XFraud能够在许多评估度量中倾销各种基线模型,同时在分布式设置中剩余可扩展。此外,我们表明,XFraud解释者可以通过定量和定性评估来显着帮助业务分析来产生合理的解释。
translated by 谷歌翻译
由于算法预测对人类的影响增加,模型解释性已成为机器学习(ML)的重要问题。解释不仅可以帮助用户了解为什么ML模型做出某些预测,还可以帮助用户了解这些预测如何更改。在本论文中,我们研究了从三个有利位置的ML模型的解释性:算法,用户和教学法,并为解释性问题贡献了一些新颖的解决方案。
translated by 谷歌翻译
近年来,基于Weisfeiler-Leman算法的算法和神经架构,是一个众所周知的Graph同构问题的启发式问题,它成为具有图形和关系数据的机器学习的强大工具。在这里,我们全面概述了机器学习设置中的算法的使用,专注于监督的制度。我们讨论了理论背景,展示了如何将其用于监督的图形和节点表示学习,讨论最近的扩展,并概述算法的连接(置换 - )方面的神经结构。此外,我们概述了当前的应用和未来方向,以刺激进一步的研究。
translated by 谷歌翻译
检测假新闻对于确保信息的真实性和维持新闻生态系统的可靠性至关重要。最近,由于最近的社交媒体和伪造的内容生成技术(例如Deep Fake)的扩散,假新闻内容的增加了。假新闻检测的大多数现有方式都集中在基于内容的方法上。但是,这些技术中的大多数无法处理生成模型生产的超现实合成媒体。我们最近的研究发现,真实和虚假新闻的传播特征是可以区分的,无论其方式如何。在这方面,我们已经根据社会环境调查了辅助信息,以检测假新闻。本文通过基于混合图神经网络的方法分析了假新闻检测的社会背景。该混合模型基于将图形神经网络集成到新闻内容上的新闻和BI定向编码器表示的传播中,以了解文本功能。因此,这种提出的方​​法可以学习内容以及上下文特征,因此能够在Politifact上以F1分别为0.91和0.93的基线模型和八西八角数据集的基线模型,分别超过了基线模型,分别在八西八学数据集中胜过0.93
translated by 谷歌翻译
Graph learning is a popular approach for performing machine learning on graph-structured data. It has revolutionized the machine learning ability to model graph data to address downstream tasks. Its application is wide due to the availability of graph data ranging from all types of networks to information systems. Most graph learning methods assume that the graph is static and its complete structure is known during training. This limits their applicability since they cannot be applied to problems where the underlying graph grows over time and/or new tasks emerge incrementally. Such applications require a lifelong learning approach that can learn the graph continuously and accommodate new information whilst retaining previously learned knowledge. Lifelong learning methods that enable continuous learning in regular domains like images and text cannot be directly applied to continuously evolving graph data, due to its irregular structure. As a result, graph lifelong learning is gaining attention from the research community. This survey paper provides a comprehensive overview of recent advancements in graph lifelong learning, including the categorization of existing methods, and the discussions of potential applications and open research problems.
translated by 谷歌翻译
Machine learning on graphs is an important and ubiquitous task with applications ranging from drug design to friendship recommendation in social networks. The primary challenge in this domain is finding a way to represent, or encode, graph structure so that it can be easily exploited by machine learning models. Traditionally, machine learning approaches relied on user-defined heuristics to extract features encoding structural information about a graph (e.g., degree statistics or kernel functions). However, recent years have seen a surge in approaches that automatically learn to encode graph structure into low-dimensional embeddings, using techniques based on deep learning and nonlinear dimensionality reduction. Here we provide a conceptual review of key advancements in this area of representation learning on graphs, including matrix factorization-based methods, random-walk based algorithms, and graph neural networks. We review methods to embed individual nodes as well as approaches to embed entire (sub)graphs. In doing so, we develop a unified framework to describe these recent approaches, and we highlight a number of important applications and directions for future work.
translated by 谷歌翻译
Pre-publication draft of a book to be published byMorgan & Claypool publishers. Unedited version released with permission. All relevant copyrights held by the author and publisher extend to this pre-publication draft.
translated by 谷歌翻译
频繁且与结构相关的子图(也称为网络基序)是许多图形数据集的宝贵特征。但是,在任意数据集中识别主题集的高计算复杂性(主题挖掘)限制了它们在许多现实世界数据集中的使用。通过自动利用数据集的统计属性,机器学习方法在具有组合复杂性的几个任务中显示出了希望,因此是网络基序挖掘的有前途的候选人。在这项工作中,我们试图促进针对图案采矿的机器学习方法的开发。我们建议将基序挖掘问题作为节点标记任务进行公式。此外,我们构建了基准数据集和评估指标,这些指标测试了模型捕获主题发现不同方面的能力,例如主题数,大小,拓扑和稀缺性。接下来,我们提出了Motifiesta,这是第一次以完全可区分的方式解决此问题的尝试,并在具有挑战性的基准方面有希望的结果。最后,我们通过Motifiesta证明,该学习设置可以同时应用于通用数据挖掘和用于图形分类任务的可解释功能提取。
translated by 谷歌翻译
Graph AutoCododers(GAE)和变分图自动编码器(VGAE)作为链接预测的强大方法出现。他们的表现对社区探测问题的印象不那么令人印象深刻,根据最近和同意的实验评估,它们的表现通常超过了诸如louvain方法之类的简单替代方案。目前尚不清楚可以通过GAE和VGAE改善社区检测的程度,尤其是在没有节点功能的情况下。此外,不确定是否可以在链接预测上同时保留良好的性能。在本文中,我们表明,可以高精度地共同解决这两个任务。为此,我们介绍和理论上研究了一个社区保留的消息传递方案,通过在计算嵌入空间时考虑初始图形结构和基于模块化的先验社区来掺杂我们的GAE和VGAE编码器。我们还提出了新颖的培训和优化策略,包括引入一个模块化的正规器,以补充联合链路预测和社区检测的现有重建损失。我们通过对各种现实世界图的深入实验验证,证明了方法的经验有效性,称为模块化感知的GAE和VGAE。
translated by 谷歌翻译
图形神经网络(GNN)在各种高桩预测任务中实现了最先进的性能,但是具有不规则结构的图表上的多层聚合使得GNN成为一种更不可解释的模型。先前的方法使用更简单的子图来模拟完整模型,或识别预测原因的完整模型或反事实。这两个方法旨在瞄准两个不同的目标,“模拟性”和“反事实相关”,但目前尚不清楚目标如何共同影响人类理解解释。我们设计用户学习,以调查这些关节效果,并使用该研究结果设计多目标优化(MOO)算法,以查找帕累托最佳解释,可在模拟性和反事实方面得到良好平衡。由于目标模型可以是任何GNN变体,并且由于隐私问题可能无法访问,因此我们使用零顺序信息设计一个搜索算法而不访问目标模型的架构和参数。来自四个应用的九个图表的定量实验表明,帕累托有效的解释主导使用一阶连续优化或离散组合搜索的单目标基线。在鲁棒性和敏感性中进一步评估了解释,以表明他们揭示令人信服的令人信服的能力,同时对可能的混乱持谨慎态度。各种主导的反事件可以证明算法追索权的可行性,这可能促进人类参与使用GNN决策的算法公平性。
translated by 谷歌翻译
Deep learning has revolutionized many machine learning tasks in recent years, ranging from image classification and video processing to speech recognition and natural language understanding. The data in these tasks are typically represented in the Euclidean space. However, there is an increasing number of applications where data are generated from non-Euclidean domains and are represented as graphs with complex relationships and interdependency between objects. The complexity of graph data has imposed significant challenges on existing machine learning algorithms. Recently, many studies on extending deep learning approaches for graph data have emerged. In this survey, we provide a comprehensive overview of graph neural networks (GNNs) in data mining and machine learning fields. We propose a new taxonomy to divide the state-of-the-art graph neural networks into four categories, namely recurrent graph neural networks, convolutional graph neural networks, graph autoencoders, and spatial-temporal graph neural networks. We further discuss the applications of graph neural networks across various domains and summarize the open source codes, benchmark data sets, and model evaluation of graph neural networks. Finally, we propose potential research directions in this rapidly growing field.
translated by 谷歌翻译