车辆边缘计算(VEC)可以在网络边缘的不同RSU中缓存内容,以支持实时车辆应用。在VEC中,由于车辆的高运动特性,有必要提前缓存用户数据,并为车辆用户学习最流行和最有趣的内容。由于用户数据通常包含隐私信息,因此用户不愿与他人共享其数据。为了解决这个问题,传统的联合学习(FL)需要通过汇总所有用户的本地模型来保护用户的隐私来同步更新全局模型。但是,车辆可能会在实现本地模型培训之前经常离开VEC的覆盖范围,因此无法按预期上传本地型号,这将降低全球模型的准确性。此外,本地RSU的缓存能力有限,流行内容是多样的,因此预测的流行内容的大小通常超过本地RSU的缓存能力。因此,在考虑内容传输延迟的同时,VEC应在不同的RSU中缓存预测的流行内容。在本文中,我们考虑了车辆的流动性,并提出了基于联合和深度强化学习(CAFR)的VEC中的合作缓存计划。我们首先考虑车辆的移动性,并提出异步FL算法以获得准确的全局模型,然后提出一种算法来预测基于全球模型的流行内容。此外,我们考虑了车辆的移动性,并提出了深入的强化学习算法,以获取预测流行内容的最佳合作缓存位置,以优化内容传输延迟。广泛的实验结果表明,CAFR方案的表现优于其他基线缓存方案。
translated by 谷歌翻译
车辆网络使车辆能够通过培训数据支持实时车辆应用。由于计算能力有限,车辆通常将数据传输到网络边缘的路边单元(RSU)以处理数据。但是,由于隐私问题,车辆通常不愿彼此共享数据。对于传统的联合学习(FL),车辆在本地训练数据以获取本地模型,然后将本地模型上传到RSU以更新全局模型,因此可以通过共享模型参数而不是数据来保护数据隐私。传统的FL同步更新全局模型,即RSU需要等待所有车辆上传其模型以进行全局模型更新。但是,车辆通常可能会在RSU通过培训获得本地模型之前从覆盖范围中移出,从而降低了全球模型的准确性。有必要提出一个异步联合学习(AFL)来解决此问题,其中RSU一旦从车辆中收到本地模型就会更新全球模型。但是,数据量,计算能力和车辆迁移率可能会影响全球模型的准确性。在本文中,我们共同考虑数据的量,计算功能和车辆移动性,以设计AFL方案以提高全球模型的准确性。广泛的仿真实验表明,我们的方案优于FL方案
translated by 谷歌翻译
移动边缘计算(MEC)是一个突出的计算范例,它扩展了无线通信的应用领域。由于用户设备和MEC服务器的能力的限制,边缘缓存(EC)优化对于有效利用启用MEC的无线网络中的高速利用。然而,内容普及空间和时间的动态和复杂性以及用户的隐私保护对EC优化构成了重大挑战。在本文中,提出了一种隐私保留的分布式深度确定性政策梯度(P2D3PG)算法,以最大化MEC网络中设备的高速缓存命中率。具体而言,我们认为内容流行度是动态,复杂和不可观察的事实,并制定了在隐私保存的限制下作为分布式问题的设备的高速缓存命中速率的最大化。特别是,我们将分布式优化转换为分布式的无模型马尔可夫决策过程问题,然后介绍一种隐私保留的联合学习方法,用于普及预测。随后,基于分布式增强学学习开发了P2D3PG算法以解决分布式问题。仿真结果表明,在保护用户隐私的同时通过基线方法提高EC击中率的提出方法的优越性。
translated by 谷歌翻译
合作的感知在将车辆的感知范围扩展到超出其视线之外至关重要。然而,在有限的通信资源下交换原始感官数据是不可行的。为了实现有效的合作感知,车辆需要解决以下基本问题:需要共享哪些感官数据?,在哪个分辨率?,以及哪个车辆?为了回答这个问题,在本文中,提出了一种新颖的框架来允许加强学习(RL)基于车辆关联,资源块(RB)分配和通过利用基于四叉的点的协作感知消息(CPM)的内容选择云压缩机制。此外,引入了联合的RL方法,以便在跨车辆上加速训练过程。仿真结果表明,RL代理能够有效地学习车辆关联,RB分配和消息内容选择,同时在接收的感官信息方面最大化车辆的满足。结果还表明,与非联邦方法相比,联邦RL改善了培训过程,可以在与非联邦方法相同的时间内实现更好的政策。
translated by 谷歌翻译
未来的互联网涉及几种新兴技术,例如5G和5G网络,车辆网络,无人机(UAV)网络和物联网(IOT)。此外,未来的互联网变得异质并分散了许多相关网络实体。每个实体可能需要做出本地决定,以在动态和不确定的网络环境下改善网络性能。最近使用标准学习算法,例如单药强化学习(RL)或深入强化学习(DRL),以使每个网络实体作为代理人通过与未知环境进行互动来自适应地学习最佳决策策略。但是,这种算法未能对网络实体之间的合作或竞争进行建模,而只是将其他实体视为可能导致非平稳性问题的环境的一部分。多机构增强学习(MARL)允许每个网络实体不仅观察环境,还可以观察其他实体的政策来学习其最佳政策。结果,MAL可以显着提高网络实体的学习效率,并且最近已用于解决新兴网络中的各种问题。在本文中,我们因此回顾了MAL在新兴网络中的应用。特别是,我们提供了MARL的教程,以及对MARL在下一代互联网中的应用进行全面调查。特别是,我们首先介绍单代机Agent RL和MARL。然后,我们回顾了MAL在未来互联网中解决新兴问题的许多应用程序。这些问题包括网络访问,传输电源控制,计算卸载,内容缓存,数据包路由,无人机网络的轨迹设计以及网络安全问题。
translated by 谷歌翻译
FOG无线电访问网络(F-RAN)是一项有前途的技术,用户移动设备(MDS)可以将计算任务卸载到附近的FOG接入点(F-APS)。由于F-APS的资源有限,因此设计有效的任务卸载方案很重要。在本文中,通过考虑随时间变化的网络环境,制定了F-RAN中的动态计算卸载和资源分配问题,以最大程度地减少MD的任务执行延迟和能源消耗。为了解决该问题,提出了基于联合的深入强化学习(DRL)算法,其中深层确定性策略梯度(DDPG)算法在每个F-AP中执行计算卸载和资源分配。利用联合学习来培训DDPG代理,以降低培训过程的计算复杂性并保护用户隐私。仿真结果表明,与其他现有策略相比,提议的联合DDPG算法可以更快地实现MDS更快的任务执行延迟和能源消耗。
translated by 谷歌翻译
In recent years, mobile devices are equipped with increasingly advanced sensing and computing capabilities. Coupled with advancements in Deep Learning (DL), this opens up countless possibilities for meaningful applications, e.g., for medical purposes and in vehicular networks. Traditional cloudbased Machine Learning (ML) approaches require the data to be centralized in a cloud server or data center. However, this results in critical issues related to unacceptable latency and communication inefficiency. To this end, Mobile Edge Computing (MEC) has been proposed to bring intelligence closer to the edge, where data is produced. However, conventional enabling technologies for ML at mobile edge networks still require personal data to be shared with external parties, e.g., edge servers. Recently, in light of increasingly stringent data privacy legislations and growing privacy concerns, the concept of Federated Learning (FL) has been introduced. In FL, end devices use their local data to train an ML model required by the server. The end devices then send the model updates rather than raw data to the server for aggregation. FL can serve as an enabling technology in mobile edge networks since it enables the collaborative training of an ML model and also enables DL for mobile edge network optimization. However, in a large-scale and complex mobile edge network, heterogeneous devices with varying constraints are involved. This raises challenges of communication costs, resource allocation, and privacy and security in the implementation of FL at scale. In this survey, we begin with an introduction to the background and fundamentals of FL. Then, we highlight the aforementioned challenges of FL implementation and review existing solutions. Furthermore, we present the applications of FL for mobile edge network optimization. Finally, we discuss the important challenges and future research directions in FL.
translated by 谷歌翻译
Unmanned aerial vehicle (UAV) swarms are considered as a promising technique for next-generation communication networks due to their flexibility, mobility, low cost, and the ability to collaboratively and autonomously provide services. Distributed learning (DL) enables UAV swarms to intelligently provide communication services, multi-directional remote surveillance, and target tracking. In this survey, we first introduce several popular DL algorithms such as federated learning (FL), multi-agent Reinforcement Learning (MARL), distributed inference, and split learning, and present a comprehensive overview of their applications for UAV swarms, such as trajectory design, power control, wireless resource allocation, user assignment, perception, and satellite communications. Then, we present several state-of-the-art applications of UAV swarms in wireless communication systems, such us reconfigurable intelligent surface (RIS), virtual reality (VR), semantic communications, and discuss the problems and challenges that DL-enabled UAV swarms can solve in these applications. Finally, we describe open problems of using DL in UAV swarms and future research directions of DL enabled UAV swarms. In summary, this survey provides a comprehensive survey of various DL applications for UAV swarms in extensive scenarios.
translated by 谷歌翻译
在本文中,我们研究了多服务器边缘计算中基于区块链的联合学习(BFL)的新延迟优化问题。在此系统模型中,分布式移动设备(MDS)与一组Edge服务器(ESS)通信,以同时处理机器学习(ML)模型培训和阻止开采。为了协助ML模型培训用于资源受限的MD,我们制定了一种卸载策略,使MD可以将其数据传输到相关的ESS之一。然后,我们基于共识机制在边缘层上提出了一个新的分散的ML模型聚合解决方案,以通过基于对等(P2P)基于基于的区块链通信构建全局ML模型。区块链在MDS和ESS之间建立信任,以促进可靠的ML模型共享和合作共识形成,并能够快速消除由中毒攻击引起的操纵模型。我们将延迟感知的BFL作为优化,旨在通过联合考虑数据卸载决策,MDS的传输功率,MDS数据卸载,MDS的计算分配和哈希功率分配来最大程度地减少系统延迟。鉴于离散卸载和连续分配变量的混合作用空间,我们提出了一种具有参数化优势演员评论家算法的新型深度强化学习方案。从理论上讲,我们根据聚合延迟,迷你批量大小和P2P通信回合的数量来表征BFL的收敛属性。我们的数值评估证明了我们所提出的方案优于基线,从模型训练效率,收敛速度,系统潜伏期和对模型中毒攻击的鲁棒性方面。
translated by 谷歌翻译
预计下一代(NEVERG)网络将支持苛刻的触觉互联网应用,例如增强现实和连接的自动车辆。虽然最近的创新带来了更大的联系能力的承诺,它们对环境的敏感性以及不稳定的性能无视基于传统的基于模型的控制理由。零触摸数据驱动的方法可以提高网络适应当前操作条件的能力。诸如强化学习(RL)算法等工具可以仅基于观察历史来构建最佳控制策略。具体而言,使用深神经网络(DNN)作为预测器的深RL(DRL)已经被示出,即使在复杂的环境和高维输入中也能够实现良好的性能。但是,DRL模型的培训需要大量数据,这可能会限制其对潜在环境的不断发展统计数据的适应性。此外,无线网络是固有的分布式系统,其中集中式DRL方法需要过多的数据交换,而完全分布的方法可能导致较慢的收敛速率和性能下降。在本文中,为了解决这些挑战,我们向DRL提出了联合学习(FL)方法,我们指的是联邦DRL(F-DRL),其中基站(BS)通过仅共享模型的重量协作培训嵌入式DNN而不是训练数据。我们评估了两个不同版本的F-DRL,价值和策略,并显示出与分布式和集中式DRL相比实现的卓越性能。
translated by 谷歌翻译
与LTE网络相比,5G的愿景在于提供较高的数据速率,低延迟(为了实现近实时应用程序),大大增加了基站容量以及用户的接近完美服务质量(QoS)。为了提供此类服务,5G系统将支持LTE,NR,NR-U和Wi-Fi等访问技术的各种组合。每种无线电访问技术(RAT)都提供不同类型的访问,这些访问应在用户中对其进行最佳分配和管理。除了资源管理外,5G系统还将支持双重连接服务。因此,网络的编排对于系统经理在旧式访问技术方面来说是一个更困难的问题。在本文中,我们提出了一种基于联合元学习(FML)的大鼠分配算法,该算法使RAN Intelligent Controller(RIC)能够更快地适应动态变化的环境。我们设计了一个包含LTE和5G NR服务技术的模拟环境。在模拟中,我们的目标是在传输的截止日期内满足UE需求,以提供更高的QoS值。我们将提出的算法与单个RL试剂,爬行动物算法和基于规则的启发式方法进行了比较。仿真结果表明,提出的FML方法分别在第一部部署回合21%和12%时达到了较高的缓存率。此外,在比较方法中,提出的方法最快地适应了新任务和环境。
translated by 谷歌翻译
在本文中,我们研究了启用高速雾无线电访问网络(F-RAN)中的内容受欢迎程度预测问题。为了以高准确性和低复杂性预测内容的流行,我们提出了基于高斯流程的回归器,以模拟内容请求模式。首先,我们提出的模型捕获了内容特征和受欢迎程度之间的关系。然后,我们利用贝叶斯学习来训练模型参数,这对于过度拟合非常可靠。但是,贝叶斯方法通常无法找到后验分布的闭合形式表达。为了解决此问题,我们采用随机方差降低梯度哈密顿蒙特卡洛(SVRG-HMC)方法来近似后验分布。为了利用其他FOG接入点(F-AP)的计算资源并减少开销的通信,我们提出了一个量化的联合学习(FL)框架与贝叶斯学习相结合。量化的联合贝叶斯学习框架允许每个F-AP在量化和编码后将梯度发送到云服务器。它可以有效地实现预测准确性和通信间接费用之间的权衡。仿真结果表明,我们提出的政策的绩效优于现有政策。
translated by 谷歌翻译
为了满足下一代无线通信网络的极其异构要求,研究界越来越依赖于使用机器学习解决方案进行实时决策和无线电资源管理。传统的机器学习采用完全集中的架构,其中整个培训数据在一个节点上收集,即云服务器,显着提高了通信开销,并提高了严重的隐私问题。迄今为止,最近提出了作为联合学习(FL)称为联合学习的分布式机器学习范式。在FL中,每个参与边缘设备通过使用自己的培训数据列举其本地模型。然后,通过无线信道,本地训练模型的权重或参数被发送到中央ps,聚合它们并更新全局模型。一方面,FL对优化无线通信网络的资源起着重要作用,另一方面,无线通信对于FL至关重要。因此,FL和无线通信之间存在“双向”关系。虽然FL是一个新兴的概念,但许多出版物已经在FL的领域发表了发布及其对下一代无线网络的应用。尽管如此,我们注意到没有任何作品突出了FL和无线通信之间的双向关系。因此,本调查纸的目的是通过提供关于FL和无线通信之间的相互依存性的及时和全面的讨论来弥合文学中的这种差距。
translated by 谷歌翻译
如今,无线通信正在迅速重塑整个行业。特别是,移动边缘计算(MEC)是一种用于工业互联网(IIOT)的促成技术,它使强大的计算/存储基础架构更靠近移动终端,从而大大降低了响应延迟。为了获得在网络边缘积极缓存的好处,对最终设备之间的受欢迎程度的精确知识至关重要。但是,在许多IIOT场景中,内容流行的内容流行以及数据私人关系的复杂性质对其获取构成了艰巨的挑战。在本文中,我们建议针对MEC启用的IIOT提供无监督和保护隐私的普及预测框架。引入了本地和全球流行的概念,并将每个用户的随时间变化为无模型的马尔可夫链。在此基础上,提出了一种新颖的无监督的复发性联合学习(URFL)算法,以预测分布式的流行,同时实现隐私保护和无监督的培训。仿真表明,提出的框架可以根据降低的根平方误差提高预测准确性,高达$ 60.5 \%-68.7 \%$。此外,避免了手动标签和违反用户数据隐私的行为。
translated by 谷歌翻译
多访问边缘计算(MEC)是一个新兴的计算范式,将云计算扩展到网络边缘,以支持移动设备上的资源密集型应用程序。作为MEC的关键问题,服务迁移需要决定如何迁移用户服务,以维持用户在覆盖范围和容量有限的MEC服务器之间漫游的服务质量。但是,由于动态的MEC环境和用户移动性,找到最佳的迁移策略是棘手的。许多现有研究根据完整的系统级信息做出集中式迁移决策,这是耗时的,并且缺乏理想的可扩展性。为了应对这些挑战,我们提出了一种新颖的学习驱动方法,该方法以用户为中心,可以通过使用不完整的系统级信息来做出有效的在线迁移决策。具体而言,服务迁移问题被建模为可观察到的马尔可夫决策过程(POMDP)。为了解决POMDP,我们设计了一个新的编码网络,该网络结合了长期记忆(LSTM)和一个嵌入式矩阵,以有效提取隐藏信息,并进一步提出了一种定制的非政策型演员 - 批判性算法,以进行有效的训练。基于现实世界的移动性痕迹的广泛实验结果表明,这种新方法始终优于启发式和最先进的学习驱动算法,并且可以在各种MEC场景上取得近乎最佳的结果。
translated by 谷歌翻译
在本文中,研究了FOG无线电访问网络(F-RAN)中的内容流行度预测问题。基于聚集的联合学习,我们提出了一种新颖的移动性知名度预测策略,该政策将内容受欢迎程度整合在本地用户和移动用户方面。对于本地用户,通过学习本地用户和内容的隐藏表示形式来预测内容的普及。本地用户和内容的初始功能是通过将邻居信息与自我信息结合在一起来生成的。然后,引入了双通道神经网络(DCNN)模型,以通过从初始功能中产生深层特征来学习隐藏表示形式。对于移动用户,通过用户偏好学习预测内容流行。为了区分内容受欢迎程度的区域变化,采用了聚类联合学习(CFL),这使具有相似区域类型的雾接入点(F-APS)彼此受益,并为每个F-AP提供更专业的DCNN模型。仿真结果表明,我们提出的政策对传统政策实现了重大的绩效提高。
translated by 谷歌翻译
The modern dynamic and heterogeneous network brings differential environments with respective state transition probability to agents, which leads to the local strategy trap problem of traditional federated reinforcement learning (FRL) based network optimization algorithm. To solve this problem, we propose a novel Differentiated Federated Reinforcement Learning (DFRL), which evolves the global policy model integration and local inference with the global policy model in traditional FRL to a collaborative learning process with parallel global trends learning and differential local policy model learning. In the DFRL, the local policy learning model is adaptively updated with the global trends model and local environment and achieves better differentiated adaptation. We evaluate the outperformance of the proposal compared with the state-of-the-art FRL in a classical CartPole game with heterogeneous environments. Furthermore, we implement the proposal in the heterogeneous Space-air-ground Integrated Network (SAGIN) for the classical traffic offloading problem in network. The simulation result shows that the proposal shows better global performance and fairness than baselines in terms of throughput, delay, and packet drop rate.
translated by 谷歌翻译
随着数据生成越来越多地在没有连接连接的设备上进行,因此与机器学习(ML)相关的流量将在无线网络中无处不在。许多研究表明,传统的无线协议高效或不可持续以支持ML,这创造了对新的无线通信方法的需求。在这项调查中,我们对最先进的无线方法进行了详尽的审查,这些方法是专门设计用于支持分布式数据集的ML服务的。当前,文献中有两个明确的主题,模拟的无线计算和针对ML优化的数字无线电资源管理。这项调查对这些方法进行了全面的介绍,回顾了最重要的作品,突出了开放问题并讨论了应用程序方案。
translated by 谷歌翻译
In heterogeneous networks (HetNets), the overlap of small cells and the macro cell causes severe cross-tier interference. Although there exist some approaches to address this problem, they usually require global channel state information, which is hard to obtain in practice, and get the sub-optimal power allocation policy with high computational complexity. To overcome these limitations, we propose a multi-agent deep reinforcement learning (MADRL) based power control scheme for the HetNet, where each access point makes power control decisions independently based on local information. To promote cooperation among agents, we develop a penalty-based Q learning (PQL) algorithm for MADRL systems. By introducing regularization terms in the loss function, each agent tends to choose an experienced action with high reward when revisiting a state, and thus the policy updating speed slows down. In this way, an agent's policy can be learned by other agents more easily, resulting in a more efficient collaboration process. We then implement the proposed PQL in the considered HetNet and compare it with other distributed-training-and-execution (DTE) algorithms. Simulation results show that our proposed PQL can learn the desired power control policy from a dynamic environment where the locations of users change episodically and outperform existing DTE MADRL algorithms.
translated by 谷歌翻译
基于5G的车辆互联网(IOV)网络中机器学习(ML)的集成使智能运输和智能流量管理。尽管如此,抵抗对抗中毒攻击的安全也越来越成为一项艰巨的任务。具体而言,深钢筋学习(DRL)是IOV应用中广泛使用的ML设计之一。标准的ML安全技术在DRL中无效,该算法学会通过与环境的持续互动来解决顺序决策,并且环境是随时间变化的,动态的和移动的。在本文中,我们提出了一个基于IOV中基于SYBIL的数据中毒攻击的封闭式复发单元(GRU)的联邦持续学习(GFCL)异常检测框架。目的是提出一个轻巧且可扩展的框架,该框架在不包含由攻击样本组成的A-Priori培训数据集的情况下学习和检测非法行为。我们使用GRU预测未来的数据顺序,以基于联合学习的分布方式分析和检测车辆的非法行为。我们使用现实世界的车辆移动轨迹研究了框架的性能。结果证明了我们提出的解决方案在不同的性能指标方面的有效性。
translated by 谷歌翻译