由于数据可用性的偏见,基于学习的学生建模的传统方法对代表性不足的学生群体的推广不佳。在本文中,我们提出了一种方法,用于预测其在线学习活动中的学生表现,以优化与种族和性别等不同人口组的推论准确性。在我们的方法中,基于联合学习的最新基础,单个学生子组的个性化模型是从在所有学生模型中通过元学级更新汇总的全球模型得出的,该模型通过说明亚组异质性。为了了解学生活动的更好代表,我们通过一种自我监督的行为预处理方法来增强我们的方法,该方法利用了多种学生行为方式(例如,访问教授视频和在论坛上的参与),并在模型中包括神经网络注意力聚合阶段。通过从在线课程中对三个现实世界数据集进行实验,我们证明我们的方法在预测所有子组的学生学习成果方面对现有的学生建模基准进行了实质性改进。对最终学生嵌入的视觉分析证实,我们的个性化方法确实确定了不同亚组中的不同活动模式,与基准相比其更强的推理能力一致。
translated by 谷歌翻译
Traditional learning-based approaches to student modeling (e.g., predicting grades based on measured activities) generalize poorly to underrepresented/minority student groups due to biases in data availability. In this paper, we propose a Multi-Layer Personalized Federated Learning (MLPFL) methodology which optimizes inference accuracy over different layers of student grouping criteria, such as by course and by demographic subgroups within each course. In our approach, personalized models for individual student subgroups are derived from a global model, which is trained in a distributed fashion via meta-gradient updates that account for subgroup heterogeneity while preserving modeling commonalities that exist across the full dataset. To evaluate our methodology, we consider case studies of two popular downstream student modeling tasks, knowledge tracing and outcome prediction, which leverage multiple modalities of student behavior (e.g., visits to lecture videos and participation on forums) in model training. Experiments on three real-world datasets from online courses demonstrate that our approach obtains substantial improvements over existing student modeling baselines in terms of increasing the average and decreasing the variance of prediction quality across different student subgroups. Visual analysis of the resulting students' knowledge state embeddings confirm that our personalization methodology extracts activity patterns which cluster into different student subgroups, consistent with the performance enhancements we obtain over the baselines.
translated by 谷歌翻译
我们研究了点击流行为中预测在线课程中学生知识获取的问题。通过电子学习讲座交付的激增,我们专注于讲座视频中的学生在视频活动中,由内容和视频测验组成。我们预测视频测验性能的方法基于我们开发的三个关键思路。首先,我们通过在原始事件数据上运行的时间序列学习架构模拟学生的点击行为,而不是定义可能在现有方法中定义手工制作的功能,可能丢失在单击序列内的重要信息。其次,我们开发了一个自我监督的Clickstream预培训,以学习Clickstream事件的信息表示,可以有效地初始化预测模型。第三,我们提出了一种基于聚类的基于元学习的培训,可以优化预测模型,以利用学生点击流序列中的频繁模式集群。通过对三个现实世界数据集的实验,我们证明我们的方法在预测学生的视频测验性能方面的两个基线模型中获得了大量改进。此外,我们通过消融研究验证了我们框架的预培训和元学习组成部分的重要性。最后,我们展示了我们的方法论如何了解与有用的学习分析有用的知识获取相关的视频监视行为的见解。
translated by 谷歌翻译
在这项工作中,我们审查并评估了一个具有公开可用和广泛使用的数据集的深度学习知识追踪(DLKT)模型,以及学习编程的新型学生数据集。评估的DLKT模型已重新实现,用于评估先前报告的结果的可重复性和可复制性。我们测试在与模型的主要架构上独立于模型的比较模型中找到的不同输入和输出层变化,以及在某些研究中隐含地和明确地使用的不同最大尝试计数选项。几个指标用于反映评估知识追踪模型的质量。评估的知识追踪模型包括Vanilla-DKT,两个长短期内存深度知识跟踪(LSTM-DKT)变体,两个动态键值存储器网络(DKVMN)变体,以及自我细致的知识跟踪(SAKT)。我们评估Logistic回归,贝叶斯知识跟踪(BKT)和简单的非学习模型作为基准。我们的结果表明,DLKT模型一般优于非DLKT模型,DLKT模型之间的相对差异是微妙的,并且在数据集之间经常变化。我们的研究结果还表明,通常的纯模型,例如平均预测,比更复杂的知识追踪模型更好地表现出更好的性能,尤其是在准确性方面。此外,我们的公制和封路数据分析显示,用于选择最佳模型的度量标准对模型的性能有明显的影响,并且该度量选择可以影响模型排名。我们还研究了输入和输出层变化的影响,过滤出长期尝试序列,以及随机性和硬件等非模型属性。最后,我们讨论模型性能可重量和相关问题。我们的模型实现,评估代码和数据作为本工作的一部分发布。
translated by 谷歌翻译
联合学习(FL)可以对机器学习模型进行分布式培训,同时将个人数据保存在用户设备上。尽管我们目睹了FL在移动传感领域的越来越多的应用,例如人类活动识别(HAR),但在多设备环境(MDE)的背景下,尚未对FL进行研究,其中每个用户都拥有多个数据生产设备。随着移动设备和可穿戴设备的扩散,MDE在Ubicomp设置中越来越受欢迎,因此需要对其中的FL进行研究。 MDE中的FL的特征是在客户和设备异质性的存在中并不复杂,并不是独立的,并且在客户端之间并非独立分布(非IID)。此外,确保在MDE中有效利用佛罗里达州客户的系统资源仍然是一个重要的挑战。在本文中,我们提出了以用户为中心的FL培训方法来应对MDE中的统计和系统异质性,并在设备之间引起推理性能的一致性。火焰功能(i)以用户为中心的FL培训,利用同一用户的设备之间的时间对齐; (ii)准确性和效率感知设备的选择; (iii)对设备的个性化模型。我们还提出了具有现实的能量流量和网络带宽配置文件的FL评估测试,以及一种基于类的新型数据分配方案,以将现有HAR数据集扩展到联合设置。我们在三个多设备HAR数据集上的实验结果表明,火焰的表现优于各种基准,F1得分高4.3-25.8%,能源效率提高1.02-2.86倍,并高达2.06倍的收敛速度,以通过FL的公平分布来获得目标准确性工作量。
translated by 谷歌翻译
在点击率(CTR)预测的联合学习(FL)中,用户的数据未共享以保护隐私。学习是通过在客户端设备上本地培训进行的,并仅将模型更改传达给服务器。有两个主要的挑战:(i)客户异质性,制作使用加权平均来汇总客户模型更新的FL算法的进步缓慢且学习结果不令人满意; (ii)由于每个实验所需的大量计算时间和资源,因此使用反复试验方法调整服务器学习率的困难。为了应对这些挑战,我们提出了一种简单的在线元学习方法,以学习汇总模型更新的策略,该方法根据客户属性适应客户的重要性并调整更新的步骤大小。我们在公共数据集上进行广泛的评估。我们的方法在收敛速度和最终学习结果的质量方面都大大优于最先进的方法。
translated by 谷歌翻译
本文提出了一个传感器数据匿名模型,该模型接受了分散数据的培训,并在数据实用程序和隐私之间进行了理想的权衡,即使在收集到的传感器数据具有不同的基础分布的异质环境中也是如此。我们称为Blinder的匿名模型基于以对抗性方式训练的变异自动编码器和歧视网络。我们使用模型 - 不合稳定元学习框架来调整通过联合学习训练的匿名模型,以适应每个用户的数据分布。我们在不同的设置下评估了盲人,并表明它提供了端到端的隐私保护,以增加隐私损失高达4.00%,并将数据实用程序降低高达4.24%,而最新的数据实用程序则将其降低了4.24%。对集中数据培训的匿名模型。我们的实验证实,Blinder可以一次掩盖多个私人属性,并且具有足够低的功耗和计算开销,以便将其部署在边缘设备和智能手机上,以执行传感器数据的实时匿名化。
translated by 谷歌翻译
Mobile traffic prediction is of great importance on the path of enabling 5G mobile networks to perform smart and efficient infrastructure planning and management. However, available data are limited to base station logging information. Hence, training methods for generating high-quality predictions that can generalize to new observations on different parties are in demand. Traditional approaches require collecting measurements from different base stations and sending them to a central entity, followed by performing machine learning operations using the received data. The dissemination of local observations raises privacy, confidentiality, and performance concerns, hindering the applicability of machine learning techniques. Various distributed learning methods have been proposed to address this issue, but their application to traffic prediction has yet to be explored. In this work, we study the effectiveness of federated learning applied to raw base station aggregated LTE data for time-series forecasting. We evaluate one-step predictions using 5 different neural network architectures trained with a federated setting on non-iid data. The presented algorithms have been submitted to the Global Federated Traffic Prediction for 5G and Beyond Challenge. Our results show that the learning architectures adapted to the federated setting achieve equivalent prediction error to the centralized setting, pre-processing techniques on base stations lead to higher forecasting accuracy, while state-of-the-art aggregators do not outperform simple approaches.
translated by 谷歌翻译
联邦学习(FL)是一种分布式学习方法,它为医学机构提供了在全球模型中合作的前景,同时保留患者的隐私。尽管大多数医疗中心执行类似的医学成像任务,但它们的差异(例如专业,患者数量和设备)导致了独特的数据分布。数据异质性对FL和本地模型的个性化构成了挑战。在这项工作中,我们研究了FL生产中间半全球模型的一种自适应分层聚类方法,因此具有相似数据分布的客户有机会形成更专业的模型。我们的方法形成了几个群集,这些集群由具有最相似数据分布的客户端组成;然后,每个集群继续分开训练。在集群中,我们使用元学习来改善参与者模型的个性化。我们通过评估我们在HAM10K数据集上的建议方法和极端异质数据分布的HAM10K数据集上的我们提出的方法,将聚类方法与经典的FedAvg和集中式培训进行比较。我们的实验表明,与标准的FL方法相比,分类精度相比,异质分布的性能显着提高。此外,我们表明,如果在群集中应用,则模型会更快地收敛,并且仅使用一小部分数据,却优于集中式培训。
translated by 谷歌翻译
个性化联合学习认为在异质网络中每个客户独有的学习模型。据称,最终的客户特定模型是为了改善联合网络中的准确性,公平性和鲁棒性等指标。但是,尽管该领域有很多工作,但仍不清楚:(1)哪些个性化技术在各种环境中最有效,以及(2)个性化对现实的联合应用程序的真正重要性。为了更好地回答这些问题,我们提出了Motley,这是个性化联合学习的基准。 Motley由一套来自各种问题域的跨设备和跨核管联合数据集组成,以及彻底的评估指标,以更好地理解个性化的可能影响。我们通过比较许多代表性的个性化联合学习方法来建立基准基准。这些最初的结果突出了现有方法的优势和劣势,并为社区提出了几个开放问题。 Motley旨在提供一种可再现的手段,以推进个性化和异质性的联合学习以及转移学习,元学习和多任务学习的相关领域。
translated by 谷歌翻译
对网络攻击的现代防御越来越依赖于主动的方法,例如,基于过去的事件来预测对手的下一个行动。建立准确的预测模型需要许多组织的知识; las,这需要披露敏感信息,例如网络结构,安全姿势和政策,这些信息通常是不受欢迎的或完全不可能的。在本文中,我们探讨了使用联合学习(FL)预测未来安全事件的可行性。为此,我们介绍了Cerberus,这是一个系统,可以为参与组织的复发神经网络(RNN)模型进行协作培训。直觉是,FL可能会在非私有方法之间提供中间地面,在非私有方法中,训练数据在中央服务器上合并,而仅训练本地模型的较低性替代方案。我们将Cerberus实例化在从一家大型安全公司的入侵预防产品中获得的数据集上,并评估其有关实用程序,鲁棒性和隐私性,以及参与者如何从系统中贡献和受益。总体而言,我们的工作阐明了将FL执行此任务的积极方面和挑战,并为部署联合方法以进行预测安全铺平了道路。
translated by 谷歌翻译
知识跟踪(KT)是使用学生的历史学习互动数据来对其知识掌握的任务,以便对他们未来的互动绩效进行预测。最近,使用各种深度学习技术来解决KT问题已经取得了显着的进步。但是,基于深度学习的知识追踪(DLKT)方法的成功仍然有些神秘,适当的测量以及对这些DLKT方法的分析仍然是一个挑战。首先,现有作品中的数据预处理程序通常是私人和/或自定义,这限制了实验标准化。此外,现有的DLKT研究通常在评估方案方面有所不同,并且是现实世界中的教育环境。为了解决这些问题,我们介绍了一个综合基于Python的基准平台\ TextSc {Pykt},以确保通过彻底评估进行跨DLKT方法的有效比较。 \ textsc {pykt}库由不同域的7个流行数据集上的一组标准化的数据预处理程序组成,而10个经常比较了用于透明实验的DLKT模型实现。我们细粒度和严格的经验KT研究的结果产生了一系列观察结果和有效DLKT的建议,例如,错误的评估设置可能会导致标签泄漏,这通常会导致性能膨胀;与Piech等人提出的第一个DLKT模型相比,许多DLKT方法的改进是最小的。 \ cite {piech2015 -Deep}。我们已经开源\ textsc {pykt},并在\ url {https://pykt.org/}上进行了实验结果。我们欢迎其他研究小组和从业人员的贡献。
translated by 谷歌翻译
我们认为在数据异质性下实现联合学习(FL)的公平分类问题。为公平分类提出的大多数方法都需要不同的数据,这些数据代表了所涉及的不同人口群体。相比之下,每个客户端都是拥有仅代表单个人口统计组的数据。因此,在客户级别的公平分类模型无法采用现有方法。为了解决这一挑战,我们提出了几种聚合技术。我们通过比较Celeba,UTK和Fairace数据集上产生的公平度量和准确性来凭经验验证这些技术。
translated by 谷歌翻译
尽管公平感知的机器学习算法一直在受到越来越多的关注,但重点一直放在集中式的机器学习上,而分散的方法却没有被解散。联合学习是机器学习的一种分散形式,客户使用服务器训练本地模型,以汇总它们以获得共享的全局模型。客户之间的数据异质性是联邦学习的共同特征,这可能会诱导或加剧对由种族或性别等敏感属性定义的无私人群体的歧视。在这项工作中,我们提出了公平命运:一种新颖的公平联合学习算法,旨在实现群体公平,同时通过公平意识的聚合方法维持高效用,该方法通过考虑客户的公平性来计算全球模型。为此,通过使用动量术语来估算公平模型更新来计算全局模型更新,该术语有助于克服嘈杂的非直接梯度的振荡。据我们所知,这是机器学习中的第一种方法,旨在使用公平的动力估算来实现公平性。四个现实世界数据集的实验结果表明,在不同级别的数据异质性下,公平命运显着优于最先进的联邦学习算法。
translated by 谷歌翻译
推荐系统被证明是提取与用户相关的内容帮助用户进行日常活动的宝贵工具(例如,找到相关的访问地点,要消费的内容,要购买的商品)。但是,为了有效,这些系统需要收集和分析大量个人数据(例如,位置检查,电影评分,点击率等),这使用户面临许多隐私威胁。在这种情况下,基于联合学习(FL)的推荐系统似乎是一个有前途的解决方案,可以在计算准确的建议的同时将个人数据保存在用户设备上时,是一个有前途的解决方案。但是,FL,因此基于FL的推荐系统,依靠中央服务器,除了容易受到攻击外,还可以遇到可伸缩性问题。为了解决这个问题,我们提出了基于八卦学习原理的分散推荐系统Pepper。在胡椒中,用户八卦模型更新并不同步。 Pepper的核心位于两个关键组成部分:一个个性化的同行采样协议,该协议保存在每个节点附近,这是与前者具有相似兴趣的节点的一部分,以及一个简单而有效的模型汇总功能,该功能构建了一个模型更适合每个用户。通过在三个实施两个用例的实验实验中进行实验:位置入住建议和电影推荐,我们证明我们的解决方案比其他分散的解决方案快42%收敛于42%与分散的竞争对手相比,长时间性能的命中率和高达21%的速度提高了21%。
translated by 谷歌翻译
Federated Learning有望在不访问数据的情况下与多个客户进行协作培训模型的能力,但是当客户的数据分布彼此差异时脆弱。这种差异进一步导致了困境:“我们是否应该优先考虑学习模型的通用性能(用于服务器的将来使用)或其个性化绩效(对于每个客户端)?”这两个看似竞争的目标使社区分裂了专注于一个或另一个,但在本文中,我们表明可以同时实现这两者。具体而言,我们提出了一个新颖的联邦学习框架,该框架将模型的双重职责与两个预测任务相结合。一方面,我们介绍了一个损失家族,这些损失家庭对非相同的班级分布,使客户能够培训一个通用的预测指标,并以一致的目标培训。另一方面,我们将个性化预测变量作为一种轻巧的自适应模块,以最大程度地减少每个客户在通用预测指标上的经验风险。借助我们将联合强大的脱钩(FED-ROD)命名的两个损失的两次挑战框架,学识渊博的模型可以同时实现最先进的通用和个性化的性能,从而实质上弥补了这两个任务。
translated by 谷歌翻译
估计路径的旅行时间是智能运输系统的重要主题。它是现实世界应用的基础,例如交通监控,路线计划和出租车派遣。但是,为这样的数据驱动任务构建模型需要大量用户的旅行信息,这与其隐私直接相关,因此不太可能共享。数据所有者之间的非独立和相同分布的(非IID)轨迹数据也使一个预测模型变得极具挑战性,如果我们直接应用联合学习。最后,以前关于旅行时间估算的工作并未考虑道路的实时交通状态,我们认为这可以极大地影响预测。为了应对上述挑战,我们为移动用户组引入GOF-TTE,生成的在线联合学习框架以进行旅行时间估计,这是我)使用联合学习方法,允许在培训时将私人数据保存在客户端设备上,并设计设计和设计。所有客户共享的全球模型作为在线生成模型推断实时道路交通状态。 ii)除了在服务器上共享基本模型外,还针对每个客户调整了一个微调的个性化模型来研究其个人驾驶习惯,从而弥补了本地化全球模型预测的残余错误。 %iii)将全球模型设计为所有客户共享的在线生成模型,以推断实时道路交通状态。我们还对我们的框架采用了简单的隐私攻击,并实施了差异隐私机制,以进一步保证隐私安全。最后,我们对Didi Chengdu和Xi'an的两个现实世界公共出租车数据集进行了实验。实验结果证明了我们提出的框架的有效性。
translated by 谷歌翻译
人类活动识别(HAR)是一项机器学习任务,在包括医疗保健在内的许多领域中进行了应用,但事实证明这是一个具有挑战性的研究问题。在医疗保健中,它主要用作老年护理的辅助技术,通常与其他相关技术(例如物联网)一起使用,因为可以在智能手机,可穿戴设备,环境环境等物联网设备的帮助下实现HAR和体内传感器。在集中式和联合环境中,已将卷积神经网络(CNN)和经常性神经网络(RNN)等深神网络技术(CNN)和复发性神经网络(RNN)用于HAR。但是,这些技术有一定的局限性:RNN不能轻易平行,CNN具有序列长度的限制,并且两者在计算上都很昂贵。此外,在面对诸如医疗保健等敏感应用程序时,集中式方法存在隐私问题。在本文中,为了解决HAR面临的一些现有挑战,我们根据惯性传感器提出了一种新颖的单块变压器,可以将RNN和CNN的优势结合在一起而无需其主要限制。我们设计了一个测试床来收集实时人类活动数据,并使用数据来训练和测试拟议的基于变压器的HAR分类器。我们还建议转移:使用拟议的变压器解决隐私问题的基于联合学习的HAR分类器。实验结果表明,在联合和集中设置中,该提出的解决方案优于基于CNN和RNN的最先进的HAR分类器。此外,拟议的HAR分类器在计算上是便宜的,因为它使用的参数少于现有的CNN/RNN分类器。
translated by 谷歌翻译
基于历史行为数据的行为预测具有实际的现实意义。它已在推荐,预测学习成绩等中应用。随着用户数据描述的完善,新功能的发展以及多个数据源的融合,包含多种行为的异质行为数据变得越来越普遍。在本文中,我们旨在纳入行为预测的异质用户行为和社会影响。为此,本文提出了一个长期术语内存(LSTM)的变体,该变体可以在对行为序列进行建模时考虑上下文信息,该投影机制可以模拟不同类型的行为之间的多方面关系以及多方面的多方面关系注意机制可以动态地从不同的方面找到信息。许多行为数据属于时空数据。提出了一种基于时空数据并建模社会影响力的社交行为图的无监督方法。此外,基于剩余的基于学习的解码器旨在根据社会行为表示和其他类型的行为表示自动构建多个高阶交叉特征。对现实世界数据集的定性和定量实验已经证明了该模型的有效性。
translated by 谷歌翻译
全球越来越多的大学将各种形式的在线学习和混合学习作为其学术课程的一部分。此外,由于199年大流行而造成的最新变化导致在线教育的重要性和无处不在。电子学习的主要优点之一不仅是改善学生的学习经验并扩大教育前景,而且还可以通过学习分析来洞悉学生的学习过程。这项研究有助于通过以下方式改善和理解电子学习过程的主题。首先,我们证明可以根据从学生的行为数据中得出的顺序模式来构建准确的预测模型,这些模式能够在课程的早期识别出表现不佳的学生。其次,我们通过研究是否应根据特定于课程的顺序模式或基于更一般的行为模式的几个课程来构建每个课程的预测模型,从而调查了建立此类预测模型的特异性征用性权衡。最后,我们提出了一种捕获行为数据中时间方面的方法,并分析了其对模型预测性能的影响。我们改进的序列分类技术的结果能够以高度准确性来预测学生的表现,而对于课程特异性模型的结果达到了90%。
translated by 谷歌翻译