关于公平建模的现有工作通常假设所有实例的敏感属性都已完全可用,由于获取敏感信息的高成本,在许多现实世界中,这可能并非如此。当未披露或可用的敏感属性时,需要手动注释培训数据的一小部分以减轻偏见。但是,跨不同敏感组的偏斜分布保留了带注释的子集中原始数据集的偏度,这导致了非最佳偏置缓解。为了应对这一挑战,我们提出了对歧视(APOD)的积极惩罚,这是一个交互式框架,以指导有限的注释以最大程度地消除算法偏见的影响。拟议的APOD将歧视惩罚与主动实例选择集成在一起,以有效利用有限的注释预算,从理论上讲,它可以限制算法偏见。根据五个基准数据集的评估,APOD在有限的注释预算下优于最先进的基线方法,并显示出与完全注释的偏见缓解相当的性能,这表明APOD可以使真实世界应用程序受益于敏感信息时的应用是有限的。
translated by 谷歌翻译
尽管Shapley值为DNN模型预测提供了有效的解释,但该计算依赖于所有可能的输入特征联盟的枚举,这导致了指数增长的复杂性。为了解决这个问题,我们提出了一种新颖的方法剪切,以显着加速DNN模型的Shapley解释,其中计算中只有几个输入特征的联盟。特征联盟的选择遵循我们提出的Shapley链规则,以最大程度地减少地面shapley值的绝对误差,从而使计算既有效又准确。为了证明有效性,我们全面评估了跨多个指标的剪切,包括地面真相shapley价值的绝对误差,解释的忠诚和跑步速度。实验结果表明,剪切始终优于不同评估指标的最先进的基线方法,这证明了其在计算资源受到限制的现实应用程序中的潜力。
translated by 谷歌翻译
随着机器学习在高风险决策问题中的不断应用,对某些社会群体的人们的潜在算法偏见对个人和我们的整个社会造成了负面影响。在现实世界中,许多此类问题涉及积极和未标记的数据,例如医学诊断,刑事风险评估和推荐系统。例如,在医学诊断中,仅记录诊断性疾病(阳性),而其他疾病则不会(未标记)。尽管在(半)监督和无监督的环境中进行了大量的现有工作,但公平问题在上述正面和未标记的学习(PUL)上下文中基本上却大大不足。在本文中,为了减轻这种张力,我们提出了一种名为Fairpul的公平意识的PUL方法。特别是,对于来自两个人群的个人的二元分类,我们旨在在两个人群中达到相似的真实正利率和假期的误报。基于对PUL的最佳公平分类器的分析,我们设计了模型不合时宜的后处理框架,利用了积极的示例和未标记的示例。从分类错误和公平度量标准方面,我们的框架在统计上是一致的。关于合成和现实世界数据集的实验表明,我们的框架在PUL和公平分类方面的表现都优于最先进。
translated by 谷歌翻译
尽管机器学习模式的发展迅速和巨大成功,但广泛的研究暴露了继承潜在歧视和培训数据的社会偏见的缺点。这种现象阻碍了他们在高利益应用上采用。因此,已经采取了许多努力开发公平机器学习模型。其中大多数要求在培训期间提供敏感属性以学习公平的模型。然而,在许多现实世界应用中,由于隐私或法律问题,获得敏感的属性通常是不可行的,这挑战了现有的公平策略。虽然每个数据样本的敏感属性未知,但我们观察到训练数据中通常存在一些与敏感属性高度相关的非敏感功能,这可以用于缓解偏差。因此,在本文中,我们研究了一种探索与学习公平和准确分类器的敏感属性高度相关的特征的新问题。理论上我们通过最小化这些相关特征与模型预测之间的相关性,我们可以学习一个公平的分类器。基于这种动机,我们提出了一种新颖的框架,该框架同时使用这些相关的特征来准确预测和执行公平性。此外,该模型可以动态调整每个相关功能的正则化权重,以平衡其对模型分类和公平性的贡献。现实世界数据集的实验结果证明了拟议模型用于学习公平模型的效力,具有高分类准确性。
translated by 谷歌翻译
文献中已经提出了各种公平限制,以减轻小组级统计偏见。它们的影响已在很大程度上评估了与一组敏感属性(例如种族或性别)相对应的不同人群。尽管如此,社区尚未观察到足够的探索,以实例限制公平的限制。基于影响功能的概念,该措施表征了训练示例对目标模型及其预测性能的影响,这项工作研究了施加公平性约束时训练示例的影响。我们发现,在某些假设下,关于公平限制的影响功能可以分解为训练示例的内核组合。提出的公平影响功能的一种有希望的应用是确定可疑的训练示例,这些训练示例可能通过对其影响得分进行排名来导致模型歧视。我们通过广泛的实验证明,对一部分重量数据示例进行培训会导致违反公平性的侵犯,而准确性的权衡。
translated by 谷歌翻译
由于其在不同领域的应用继续扩大和多样化,因此机器学习的公平正在越来越越来越受到关注。为了减轻不同人口组之间的区分模型行为,我们介绍了一种新的后处理方法来通过组感知阈值适应优化多个公平性约束。我们建议通过优化从分类模型输出的概率分布估计的混淆矩阵来学习每个人口统计组的自适应分类阈值。由于我们仅需要模型输出的估计概率分布而不是分类模型结构,我们的后处理模型可以应用于各种分类模型,并以模型 - 不可知方式提高公平性并确保隐私。这甚至允许我们在后处理现有的公平方法,以进一步提高准确性和公平性之间的权衡。此外,我们的模型具有低计算成本。我们为我们的优化算法的收敛性提供严格的理论分析和我们方法的准确性和公平性之间的权衡。我们的方法理论上使得能够在与现有方法相同的情况下的近最优性的更好的上限。实验结果表明,我们的方法优于最先进的方法,并获得最接近理论精度公平折衷边界的结果。
translated by 谷歌翻译
最近,公平感知学习已经变得越来越重要,但我们注意到这些方法的大多数方法是通过假设完全注释的组标签的可用性来运作。我们强调,这种假设对于现实世界的应用是不现实的,因为组标签注释昂贵,并且可以与隐私问题冲突。在本文中,我们考虑了一种更实际的场景,称为算法公平,部分注释的组标签(Fair-PG)。我们观察到现有的公平方法,该方法仅使用与组标签的数据,表现比Vanilla培训更糟糕,这仅在Fair-PG下使用目标标签使用完整数据。为了解决这个问题,我们提出了一个简单的基于席信的群标签分配(CGL)策略,这些策略随时适用于任何公平意识的学习方法。我们的CGL利用辅助组分类器分配伪组标签,其中随机标签分配给低自信的样本。我们首先理论上表明,在公平标准方面,我们的方法设计优于香草伪标签策略。然后,我们经验展示了通过组合CGL和最先进的公平性的处理方法,与基线方法相比结合CGL和最先进的公平知识的处理方法,将目标精度和公平度量进行联合改善。此外,我们令人信服地表明,我们的CGL使得自然地将给定的组标记的数据集自然使用外部数据集仅适用于目标标签,以便可以提高精度和公平度量。我们将公开释放我们的实施,以便将来的研究重现我们的结果。
translated by 谷歌翻译
在本文中,我们回答了插入标签噪声(较少的信息标签)时的问题,而是返回更准确和公平的模型。我们主要通过三次观察启发:1)与降低标签噪声速率相比,增加噪声速率易于实现; 2)增加某类实例的标签噪声以平衡噪声速率(增加到平衡)导致更容易的学习问题; 3)增加对平衡改善了对标签偏差的公平保障。在本文中,我们首先通过增加一组实例的标签噪声率W.r.t.来量化推出的权衡。损失标签信息和降低的学习困难。我们在改善泛化能量或公平保证方面,我们分析了这样的增加是有益的。然后,我们介绍一种方法来正确插入标签噪声,以便与嘈杂的标签学习学习的任务,无论是没有还是公平约束。我们面临的主要技术挑战是由于我们不知道哪些数据实例遭受更高的噪音,而且我们不会有地面真理标签来验证任何可能的假设。我们提出了一种检测方法,可以向我们通知我们,在不使用地面真理标签的情况下,哪一组标签可能会遭受更高的噪音。我们正式建立了提出的解决方案的有效性,并通过广泛的实验证明了它。
translated by 谷歌翻译
基于机器学习的决策支持系统的利用率增加强调了导致所有利益相关者准确和公平的预测的必要性。在这项工作中,我们提出了一种新的方法,可以在训练期间提高神经网络模型的公平性。我们介绍了一系列公平性,增强了我们与传统的二进制交叉熵基准损耗一起使用的正规化组件。这些损失函数基于偏置奇偶校验分数(BPS),一个分数有助于使用单个数字量化模型中的偏差。在目前的工作中,我们调查这些正则化组件对偏见的行为和效果。我们在累犯预测任务以及基于人口普查的成人收入数据集的上下文中部署它们。结果表明,对于公平损失功能的良好选择,我们可以减少训练有素的模型的偏置,而不会降低精度,即使在不平衡数据集中也是如此。
translated by 谷歌翻译
机器学习模型在高赌注应用中变得普遍存在。尽管在绩效方面有明显的效益,但该模型可以表现出对少数民族群体的偏见,并导致决策过程中的公平问题,导致对个人和社会的严重负面影响。近年来,已经开发了各种技术来减轻机器学习模型的偏差。其中,加工方法已经增加了社区的关注,在模型设计期间直接考虑公平,以诱导本质上公平的模型,从根本上减轻了产出和陈述中的公平问题。在本调查中,我们审查了加工偏置减缓技术的当前进展。基于在模型中实现公平的地方,我们将它们分类为明确和隐性的方法,前者直接在培训目标中纳入公平度量,后者重点介绍精炼潜在代表学习。最后,我们在讨论该社区中的研究挑战来讨论调查,以激励未来的探索。
translated by 谷歌翻译
人们对算法偏见风险的认识越来越多,促进了围绕偏见缓解策略的努力。大多数提议的方法都属于两个类别之一:(1)对预测模型施加算法公平限制,以及(2)收集其他培训样本。最近以及在这两个类别的交集中,已经开发了在公平限制下提出主动学习的方法。但是,提出的缓解策略通常忽略了观察到的标签中呈现的偏差。在这项工作中,我们研究了在有标签偏见的情况下对主动数据收集策略的公平考虑。我们首先概述了在监督学习系统的背景下,不同类型的标签偏差。然后,我们从经验上表明,当忽略标签偏差时,收集更多数据会加剧偏见,并施加依赖数据收集过程中观察到的标签的公平约束可能无法解决问题。我们的结果说明了部署试图减轻单一类型偏见的模型的意外后果数据收集期间的偏差。
translated by 谷歌翻译
分类,一种重大研究的数据驱动机器学习任务,驱动越来越多的预测系统,涉及批准的人类决策,如贷款批准和犯罪风险评估。然而,分类器经常展示歧视性行为,特别是当呈现有偏置数据时。因此,分类公平已经成为一个高优先级的研究区。数据管理研究显示与数据和算法公平有关的主题的增加和兴趣,包括公平分类的主题。公平分类的跨学科努力,具有最大存在的机器学习研究,导致大量的公平概念和尚未系统地评估和比较的广泛方法。在本文中,我们对13个公平分类方法和额外变种的广泛分析,超越,公平,公平,效率,可扩展性,对数据误差的鲁棒性,对潜在的ML模型,数据效率和使用各种指标的稳定性的敏感性和稳定性现实世界数据集。我们的分析突出了对不同指标的影响的新颖见解和高级方法特征对不同方面的性能方面。我们还讨论了选择适合不同实际设置的方法的一般原则,并确定以数据管理为中心的解决方案可能产生最大影响的区域。
translated by 谷歌翻译
机器学习模型在许多领域都表现出了有希望的表现。但是,担心他们可能会偏向特定的群体,阻碍了他们在高级申请中的采用。因此,必须确保机器学习模型中的公平性。以前的大多数努力都需要访问敏感属性以减轻偏见。尽管如此,由于人们对隐私和法律依从性的认识日益增加,获得具有敏感属性的大规模数据通常是不可行的。因此,一个重要的研究问题是如何在隐私下做出公平的预测?在本文中,我们研究了半私人环境中公平分类的新问题,其中大多数敏感属性都是私有的,只有少量的干净敏感属性可用。为此,我们提出了一个新颖的框架Fairsp,可以首先学会通过利用有限的清洁敏感属性来纠正隐私保证下的嘈杂敏感属性。然后,它以对抗性方式共同建模校正和清洁数据以进行歧义和预测。理论分析表明,当大多数敏感属性都是私有的时,提出的模型可以确保公平。现实世界数据集的实验结果证明了所提出的模型在隐私下做出公平预测并保持高精度的有效性。
translated by 谷歌翻译
尽管机器学习分类器越来越多地用于高风险决策(例如癌症诊断,刑事起诉决策),但他们表现出了针对代表性不足的群体的偏见。公平性的标准定义需要访问感兴趣的敏感属性(例如性别和种族),这通常不可用。在这项工作中,我们证明了在这些敏感属性未知的情况下,人们仍然可以通过使用从敏感属性预测因子得出的代理敏感属性来可靠地估计并最终控制公平性。具体来说,我们首先表明,只有对完整数据分布的了解,就可以使用敏感属性预测因子获得分类器真实公平度量的上和下限。其次,我们证明了如何通过控制代理敏感属性的公平性来证明人们如何证明对真实敏感属性的公平性。我们的结果在比以前的作品明显温和的假设下得出。我们在一系列合成和真实数据集上说明了结果。
translated by 谷歌翻译
基于梯度提升决策树(GBDT)的机器学习(ML)算法在从医疗保健到金融的各种任务关键应用程序中的许多表格数据任务上仍然受到青睐。但是,GBDT算法并不能免于偏见和歧视性决策的风险。尽管GBDT的受欢迎程度和公平ML研究的迅速发展,但现有的经过处理的公平ML方法要么不适用GBDT,因此在大量的火车时间内开销,或者由于高级失衡的问题而不足。我们提出FairgBM,这是一个在公平限制下培训GBDT的学习框架,与无约束的LightGBM相比,对预测性能几乎没有影响。由于常见的公平指标是不可差异的,因此我们使用平滑的凸错误率代理采用``代理 - 拉格朗日''公式来实现基于梯度的优化。此外,与相关工作相比,我们的开源实施在训练时间中显示了一个数量级的加速顺序,这是一个关键方面,旨在促进现实世界实践者对FairgBM的广泛采用。
translated by 谷歌翻译
尽管大规模的经验风险最小化(ERM)在各种机器学习任务中取得了高精度,但公平的ERM受到公平限制与随机优化的不兼容的阻碍。我们考虑具有离散敏感属性以及可能需要随机求解器的可能性大型模型和数据集的公平分类问题。现有的内部处理公平算法在大规模设置中要么是不切实际的,因为它们需要在每次迭代时进行大量数据,要么不保证它们会收敛。在本文中,我们开发了第一个具有保证收敛性的随机内处理公平算法。对于人口统计学,均衡的赔率和公平的机会均等的概念,我们提供了算法的略有变化,称为Fermi,并证明这些变化中的每一个都以任何批次大小收敛于随机优化。从经验上讲,我们表明Fermi适合具有多个(非二进制)敏感属性和非二进制目标的随机求解器,即使Minibatch大小也很小,也可以很好地表现。广泛的实验表明,与最先进的基准相比,FERMI实现了所有经过测试的设置之间的公平违规和测试准确性之间最有利的权衡,该基准是人口统计学奇偶校验,均衡的赔率,均等机会,均等机会。这些好处在小批量的大小和非二元分类具有大量敏感属性的情况下尤其重要,这使得费米成为大规模问题的实用公平算法。
translated by 谷歌翻译
自几十年前以来,已经证明了机器学习评估贷款申请人信誉的实用性。但是,自动决策可能会导致对群体或个人的不同治疗方法,可能导致歧视。本文基准了12种最大的偏见缓解方法,讨论其绩效,该绩效基于5个不同的公平指标,获得的准确性以及为金融机构提供的潜在利润。我们的发现表明,在确保准确性和利润的同时,实现公平性方面的困难。此外,它突出了一些表现最好和最差的人,并有助于弥合实验机学习及其工业应用之间的差距。
translated by 谷歌翻译
在高风险领域(人们的生计受到影响)中,机器学习的日益增长的使用迫切需要解释和公平的算法。在这些设置中,此类算法的准确性也至关重要。考虑到这些需求,我们提出了一个混合整数优化(MIO)框架,用于学习具有固定深度的最佳分类树,可以通过任意域特定的公平约束来方便地增强。我们基于在流行数据集上建造公平树木的最先进方法基准测试;鉴于固定的歧视阈值,我们的方法平均将样本外(OOS)的精度提高了2.3个百分点,并在88.9%的实验上获得了更高的OOS精度。我们还将各种算法公平概念纳入我们的方法中,展示其多功能建模能力,使决策者可以微调准确性和公平性之间的权衡。
translated by 谷歌翻译
数据驱动的AI系统可以根据性别或种族等保护属性导致歧视。这种行为的一个原因是训练数据中的编码的社会偏见(例如,女性是不平衡的,这在不平衡的阶级分布情况下加剧(例如,“授予”是少数阶级)。最先进的公平知识机器学习方法专注于保持\ emph {总体}分类准确性,同时提高公平性。在类别的不平衡存在下,这种方法可以进一步加剧歧视问题,通过否认已经不足的群体(例如,\ Texit {女性})的基本社会特权(例如,平等信用机会)的基本权利。为此,我们提出了Adafair,一个公平知识的提升集合,可以在每轮的数据分布中改变数据分布,同时考虑到阶级错误,还考虑到基于部分集合累积累积的模型的公平相关性能。除了培训集团的培训促进,除了每轮歧视,Adafair通过优化用于平衡错误性能(BER)的集成学习者的数量,直接在训练后阶段解决不平衡。 Adafair可以促进基于不同的基于奇偶阶级的公平概念并有效减轻歧视性结果。我们的实验表明,我们的方法可以在统计阶段,平等机会方面实现平价,同时保持所有课程的良好预测性能。
translated by 谷歌翻译
本文旨在改善多敏感属性的机器学习公平。自机学习软件越来越多地用于高赌注和高风险决策,机器学习公平吸引了越来越多的关注。大多数现有的机器学习公平解决方案一次只针对一个敏感的属性(例如性别),或者具有魔法参数来调整,或者具有昂贵的计算开销。为了克服这些挑战,我们在培训机器学习模型之前,我们建议平衡每种敏感属性的培训数据分布。我们的研究结果表明,在低计算开销的情况下,在低计算开销的情况下,Fairbalancy可以在每一个已知的敏感属性上显着减少公平度量(AOD,EOD和SPD),如果对预测性能有任何损坏,则可以在没有多大的情况下进行任何已知的敏感属性。此外,FairbalanceClass是非游价的变种,可以平衡培训数据中的班级分布。通过FairbalanceClass,预测将不再支持多数阶级,从而在少数阶级获得更高的F $ _1 $得分。 Fairbalance和FairbalanceClass还以预测性能和公平度量而言,在其他最先进的偏置缓解算法中也优于其他最先进的偏置缓解算法。本研究将通过提供一种简单但有效的方法来利用社会来改善具有多个敏感属性数据的机器学习软件的公平性。我们的结果还验证了在具有无偏见的地面真理标签上的数据集上的假设,学习模型中的道德偏置在很大程度上属于每个组内具有(2)类分布中的组大小和(2)差异的训练数据。
translated by 谷歌翻译