To build Video Question Answering (VideoQA) systems capable of assisting humans in daily activities, seeking answers from long-form videos with diverse and complex events is a must. Existing multi-modal VQA models achieve promising performance on images or short video clips, especially with the recent success of large-scale multi-modal pre-training. However, when extending these methods to long-form videos, new challenges arise. On the one hand, using a dense video sampling strategy is computationally prohibitive. On the other hand, methods relying on sparse sampling struggle in scenarios where multi-event and multi-granularity visual reasoning are required. In this work, we introduce a new model named Multi-modal Iterative Spatial-temporal Transformer (MIST) to better adapt pre-trained models for long-form VideoQA. Specifically, MIST decomposes traditional dense spatial-temporal self-attention into cascaded segment and region selection modules that adaptively select frames and image regions that are closely relevant to the question itself. Visual concepts at different granularities are then processed efficiently through an attention module. In addition, MIST iteratively conducts selection and attention over multiple layers to support reasoning over multiple events. The experimental results on four VideoQA datasets, including AGQA, NExT-QA, STAR, and Env-QA, show that MIST achieves state-of-the-art performance and is superior at computation efficiency and interpretability.
translated by 谷歌翻译
本文提出了一个视频图形变压器(VGT)模型,用于视频Quetion Answering(VideoQA)。 VGT的唯一性是双重的:1)它设计了一个动态图形变压器模块,该模块通过明确捕获视觉对象,它们的关系和动态来编码视频,以进行复杂的时空推理; 2)它利用了删除的视频和文本变压器,以比较视频和文本以执行质量检查,而不是纠缠的跨模式变压器进行答案分类。视觉文本通信是通过其他跨模式相互作用模块完成的。借助更合理的视频编码和质量检查解决方案,我们表明VGT可以在挑战动态关系推理的视频中取得更好的性能,而不是在没有预处理的情况下。它的性能甚至超过了那些被数百万个外部数据鉴定的模型。我们进一步表明,VGT也可以从自我监督的交叉模式预处理中受益匪浅,但数据的数量级较小。这些结果清楚地表明了VGT的有效性和优势,并揭示了其具有更高数据预处理的潜力。通过全面的分析和一些启发式观察,我们希望VGT能够在现实视频中促进VQA研究超越粗略的认识/描述,以实现细粒度的关系推理。我们的代码可在https://github.com/sail-sg/vgt上找到。
translated by 谷歌翻译
视频问题回答是一项具有挑战性的任务,需要共同理解语言输入,单个视频帧中的视觉信息以及视频中发生的事件的时间信息。在本文中,我们提出了一种新颖的多流视频编码器,用于视频问题回答,它使用多个视频输入和一种新的视频文本迭代迭代式共同指定方法来回答与视频相关的各种问题。我们在几个数据集上进行了实验评估该模型,例如MSRVTT-QA,MSVD-QA,IVQA,超过了大幅度的先前最新时间。同时,我们的模型将所需的Gflops从150-360减少到只有67,从而产生了高效的视频答案模型。
translated by 谷歌翻译
视频问题应答需要模型来理解和理由对复杂的视频和语言数据来正确地推导答案。现有努力专注于设计复杂的跨模型交互,使来自两个模态的信息融合,同时将视频和问题全面地作为帧和单词序列对。尽管取得了成功,但这些方法基本上围绕了视频和问题内容的连续性,对问题回答和缺乏可解释性的问题提供了很少的洞察。在这项工作中,我们认为,虽然视频以帧序列呈现,但是在语义空间中的视觉元素(例如,对象,动作,活动和事件)不是顺序但相当分层。为了与语言查询中的语言概念的多粒子概念对齐,我们建议将视频作为条件图层次结构,以相应的文本线索的指导在一起以级别明智的方式编织不同粒度的视觉事实。尽管简单性,我们的广泛实验表明了这种条件等级图形架构的优越性,并且在现有方法上具有明显的性能改进,以及不同类型的问题的更好的概括。进一步分析还巩固模型的可靠性,因为它显示了预测答案的有意义的视觉文本证据。
translated by 谷歌翻译
Video-language pre-training has advanced the performance of various downstream video-language tasks. However, most previous methods directly inherit or adapt typical image-language pre-training paradigms to video-language pre-training, thus not fully exploiting the unique characteristic of video, i.e., temporal. In this paper, we propose a Hierarchical Temporal-Aware video-language pre-training framework, HiTeA, with two novel pre-training tasks for modeling cross-modal alignment between moments and texts as well as the temporal relations of video-text pairs. Specifically, we propose a cross-modal moment exploration task to explore moments in videos, which results in detailed video moment representation. Besides, the inherent temporal relations are captured by aligning video-text pairs as a whole in different time resolutions with multi-modal temporal relation exploration task. Furthermore, we introduce the shuffling test to evaluate the temporal reliance of datasets and video-language pre-training models. We achieve state-of-the-art results on 15 well-established video-language understanding and generation tasks, especially on temporal-oriented datasets (e.g., SSv2-Template and SSv2-Label) with 8.6% and 11.1% improvement respectively. HiTeA also demonstrates strong generalization ability when directly transferred to downstream tasks in a zero-shot manner. Models and demo will be available on ModelScope.
translated by 谷歌翻译
视频语言(VIDL)建模的巨大挑战在于从图像/视频理解模型和下游Vidl数据中提取的固定视频表示之间的断开。最近的研究试图通过端到端培训来减轻这种断开连接。为了使其进行计算可行,先前的作品倾向于“想象”视频输入,即,将一些稀疏的采样帧馈送到2D CNN中,然后是简单的均值汇集或连接以获得整体视频表示。虽然实现了有希望的结果,但这种简单的方法可能会失去对于执行下游VIDL任务至关重要的时间信息。在这项工作中,我们呈现紫罗兰色,全新的视频语言变压器,采用视频变压器,明确地模拟视频输入的时间动态。此外,与以前的研究不同,发现视频输入上的预训练任务(例如,屏蔽帧建模)不是非常有效的,我们设计了一个新的预训练任务,屏蔽了视觉令牌建模(MVM),以获得更好的视频建模。具体地,原始视频帧修补程序将“令牌化”转换为离散的视觉令牌,目标是基于蒙面的贴片恢复原始的视觉令牌。综合分析展示了通过视频变压器和MVM显式时间建模的有效性。因此,紫罗兰在5个视频问题的回答任务和4个文本到视频检索任务中实现了新的最先进的性能。
translated by 谷歌翻译
Video-language pre-training is crucial for learning powerful multi-modal representation. However, it typically requires a massive amount of computation. In this paper, we develop SMAUG, an efficient pre-training framework for video-language models. The foundation component in SMAUG is masked autoencoders. Different from prior works which only mask textual inputs, our masking strategy considers both visual and textual modalities, providing a better cross-modal alignment and saving more pre-training costs. On top of that, we introduce a space-time token sparsification module, which leverages context information to further select only "important" spatial regions and temporal frames for pre-training. Coupling all these designs allows our method to enjoy both competitive performances on text-to-video retrieval and video question answering tasks, and much less pre-training costs by 1.9X or more. For example, our SMAUG only needs about 50 NVIDIA A6000 GPU hours for pre-training to attain competitive performances on these two video-language tasks across six popular benchmarks.
translated by 谷歌翻译
The canonical approach to video-and-language learning (e.g., video question answering) dictates a neural model to learn from offline-extracted dense video features from vision models and text features from language models. These feature extractors are trained independently and usually on tasks different from the target domains, rendering these fixed features sub-optimal for downstream tasks. Moreover, due to the high computational overload of dense video features, it is often difficult (or infeasible) to plug feature extractors directly into existing approaches for easy finetuning. To provide a remedy to this dilemma, we propose a generic framework CLIPBERT that enables affordable endto-end learning for video-and-language tasks, by employing sparse sampling, where only a single or a few sparsely sampled short clips from a video are used at each training step. Experiments on text-to-video retrieval and video question answering on six datasets demonstrate that CLIP-BERT outperforms (or is on par with) existing methods that exploit full-length videos, suggesting that end-to-end learning with just a few sparsely sampled clips is often more accurate than using densely extracted offline features from full-length videos, proving the proverbial less-is-more principle. Videos in the datasets are from considerably different domains and lengths, ranging from 3-second genericdomain GIF videos to 180-second YouTube human activity videos, showing the generalization ability of our approach. Comprehensive ablation studies and thorough analyses are provided to dissect what factors lead to this success. Our code is publicly available. 1 * Equal contribution.
translated by 谷歌翻译
现有的视觉问题回答方法倾向于捕获视觉和语言方式中的虚假相关性,并且未能发现真正的休闲机制,这些机制是基于主导的视觉证据和正确的问题意图而实现推理的真正休闲机制。此外,现有方法通常忽略了多模式设置中复杂的事件级别的理解,这需要因果推断对共同模型跨模式事件的时间性,因果关系和动力学的强大认知能力。在这项工作中,我们通过引入因果干预方法来减轻虚假相关性并发现真实的因果结构,从而从新的角度(即跨模式因果关系推理)回答事件级别的视觉问题,即跨模式的因果关系推理并发现了真实的因果结构,以集成视觉和语言的相关性方式。具体而言,我们提出了一个新颖的事件级视觉问题答案框架,称为跨模式因果关系推理(CMCIR),以实现强大的偶然性随意感知的视觉视觉语言问题。为了揭示视觉和语言方式的因果结构,提出了新颖的因果关系 - 感知视觉语言推理(CVLR)模块,以通过精心设计的前对门和后门Causal Causal Intervention模块进行合作地解散视觉和语言的杂语相关性。为了发现语言语义和时空表示之间的细粒度相互作用,我们构建了一种新型的时空变压器(STT),该变压器(STT)构建了视觉内容和语言内容之间的多模式共发生相互作用。大规模事件级城市数据集SUTD-TrafficQA和三个基准现实世界数据集TGIF-QA,MSVD-QA和MSRVTT-QA进行了广泛的实验,这证明了我们的CMCIR在发现视觉效果的Causal Causal Causal结构中的有效性。
translated by 谷歌翻译
Astounding results from Transformer models on natural language tasks have intrigued the vision community to study their application to computer vision problems. Among their salient benefits, Transformers enable modeling long dependencies between input sequence elements and support parallel processing of sequence as compared to recurrent networks e.g., Long short-term memory (LSTM). Different from convolutional networks, Transformers require minimal inductive biases for their design and are naturally suited as set-functions. Furthermore, the straightforward design of Transformers allows processing multiple modalities (e.g., images, videos, text and speech) using similar processing blocks and demonstrates excellent scalability to very large capacity networks and huge datasets. These strengths have led to exciting progress on a number of vision tasks using Transformer networks. This survey aims to provide a comprehensive overview of the Transformer models in the computer vision discipline. We start with an introduction to fundamental concepts behind the success of Transformers i.e., self-attention, large-scale pre-training, and bidirectional feature encoding. We then cover extensive applications of transformers in vision including popular recognition tasks (e.g., image classification, object detection, action recognition, and segmentation), generative modeling, multi-modal tasks (e.g., visual-question answering, visual reasoning, and visual grounding), video processing (e.g., activity recognition, video forecasting), low-level vision (e.g., image super-resolution, image enhancement, and colorization) and 3D analysis (e.g., point cloud classification and segmentation). We compare the respective advantages and limitations of popular techniques both in terms of architectural design and their experimental value. Finally, we provide an analysis on open research directions and possible future works. We hope this effort will ignite further interest in the community to solve current challenges towards the application of transformer models in computer vision.
translated by 谷歌翻译
文本视频检索是一项具有巨大实际价值的任务,并受到了越来越多的关注,其中学习时空视频表示是研究热点之一。最先进的视频检索模型中的视频编码通常会直接采用预训练的视觉主链,其网络结构固定,因此无法进一步改进它们以产生细粒度的空间时间表视频表示。在本文中,我们提出了令牌移位和选择网络(TS2-NET),这是一种新型的令牌移动和选择变压器体系结构,该架构会动态调整令牌序列,并从输入视频样本中选择时间和空间维度中的信息令牌。令牌移位模块在时间上暂时移动整个代币特征,来回跨相邻帧,以保留完整的令牌表示并捕获微妙的动作。然后,令牌选择模块选择对局部空间语义贡献最大的令牌。基于彻底的实验,拟议的TS2-NET在主要文本视频检索基准上实现了最先进的性能,包括有关MSRVTT,VATEX,LSMDC,LSMDC,ActivityNetnet和DideMo的新记录。
translated by 谷歌翻译
近年来,统一的视觉语言框架已经大大提高,其中大多数采用编码器架构将图像文本任务统一为序列到序列的生成。但是,现有的视频语言(VIDL)模型仍需要在每个任务的模型体系结构和培训目标中进行特定于任务的设计。在这项工作中,我们探索了一个统一的VIDL框架薰衣草,其中蒙版语言建模(MLM)用作所有前训练和下游任务的常见接口。这样的统一导致了简化的模型体系结构,在多模式编码器之上,只需要一个轻巧的MLM头,而不是具有更多参数的解码器。令人惊讶的是,实验结果表明,这个统一的框架在14个VIDL基准测试中实现了竞争性能,涵盖了视频问答,文本到视频检索和视频字幕。广泛的分析进一步证明了薰衣草比现有VIDL方法的优势:(i)在多任务列出时仅使用一组参数值支持所有下游任务; (ii)对各种下游任务的几乎没有概括; (iii)在视频问题回答任务上启用零射门评估。代码可从https://github.com/microsoft/lavender获得。
translated by 谷歌翻译
我们研究了联合视频和语言(VL)预培训,以实现跨模型学习和益处丰富的下游VL任务。现有的作品要么提取低质量的视频特征或学习有限的文本嵌入,但忽略了高分辨率视频和多样化的语义可以显着提高跨模型学习。在本文中,我们提出了一种新的高分辨率和多样化的视频 - 语言预训练模型(HD-VILA),用于许多可视任务。特别是,我们收集具有两个不同属性的大型数据集:1)第一个高分辨率数据集包括371.5k小时的720p视频,2)最多样化的数据集涵盖15个流行的YouTube类别。为了启用VL预培训,我们通过学习丰富的时空特征的混合变压器联合优化HD-VILA模型,以及多峰变压器,用于强制学习视频功能与多样化文本的交互。我们的预训练模式实现了新的最先进的导致10 VL了解任务和2个新颖的文本到视觉生成任务。例如,我们以零拍摄MSR-VTT文本到视频检索任务的相对增加38.5%R @ 1的相对增长,高分辨率数据集LSMDC为53.6%。学习的VL嵌入也有效地在文本到视觉操纵和超分辨率任务中产生视觉上令人愉悦和语义相关结果。
translated by 谷歌翻译
视频字幕的规范方法决定了用于从离线提取的密集视频特征学习的标题生成模型。这些特征提取器通常在以固定帧速率采样的视频帧上操作,并且通常在图像/视频理解任务上培训,而不适用于视频标题数据。在这项工作中,我们展示了Swinbert,一种用于视频字幕的基于端到端的变换器的模型,它将视频帧贴片直接作为输入,并输出自然语言描述。我们的方法代替利用多个2D / 3D特征提取器,该方法采用视频变压器来编码可适应可变长度的视频输入,而无需专用设计,可以针对不同的帧速率进行专用设计。基于该模型架构,我们表明视频标题可以从更密集地采样的视频帧中受益匪浅,而不是以前的成功,用于视频和语言理解任务的稀疏采样视频帧(例如,视频问题应答)。此外,为了避免连续视频帧中固有的冗余,我们建议通过更好的远程视频序列建模来自适应地学习稀疏的注意掩模并优化任务特定性能改进。通过对5个视频字幕数据集的广泛实验,我们展示了Swinbert通过较大的余量来实现对以前的方法的整体性能改进。此外,学习的稀疏注意力掩模将限制推向新的技术,可以在不同的视频长度和不同的数据集之间传输。
translated by 谷歌翻译
本文介绍了Omnivl,这是一种新的基础模型,旨在使用一种通用体系结构来支持图像语言和视频语言任务。它为图像和视频输入采用了统一的基于变压器的视觉编码器,因此可以执行联合图像语言和视频语言预处理。我们首次证明了这样的范式受益于图像和视频任务,而不是传统的单向传输(例如,使用图像语言来帮助视频语言)。为此,我们提出了对图像语言和视频语言的脱钩关节预处理,以有效地将视觉模型分解为空间和时间维度,并在图像和视频任务上获得性能提升。此外,我们引入了一种新颖的统一视觉对比度(UNIVLC)损失,以利用图像文本,视频文本,图像标签(例如,图像分类),视频标签(例如,视频动作识别)在一起受到监督和吵闹的监督预处理数据都尽可能多地利用。无需额外的任务适配器,Omnivl可以同时支持仅视觉任务(例如,图像分类,视频操作识别),跨模式对齐任务(例如,图像/视频 - 文本检索)和多模式理解和生成任务(例如,图像/视频问答,字幕)。我们在各种下游任务上评估Omnivl,并以相似的模型大小和数据量表获得最新的或竞争结果。
translated by 谷歌翻译
培训有效的视频和语言模型直观地需要多个帧作为模型输入。但是,目前尚不清楚使用多个帧是否有利于下游任务,如果是的话,性能增益是否值得通过使用更多帧产生的巨大计算和内存成本。在这项工作中,我们探索了视频和语言学习的单帧模型。在各种视频和语言任务(包括文本到视频检索和视频问题)上,我们显示出令人惊讶的结果,即通过大规模的预训练和适当的框架合奏在推理时,与使用多个训练的现有方法相比,不考虑时间信息的单帧训练模型可以实现更好的性能。该结果揭示了流行的视频和语言数据集中存在强烈的“静态外观偏差”。因此,为了对视频和语言模型进行更全面的评估,我们建议基于现有的细粒度识别数据集,提出了两个新的检索任务,以鼓励时间建模。我们的代码可从https://github.com/jayleicn/singularity获得
translated by 谷歌翻译
我们介绍了一种视听方法,用于远程文本到视频检索。与以前专为简短视频检索设计的方法(例如,持续时间为5-15秒)不同,我们的方法旨在检索捕获复杂人类动作的长时间视频。仅标准视频方法的一个挑战是与从这样的长视频中处理数百个密集提取的帧相关的大量计算成本。为了解决这个问题,我们建议用紧凑的音频提示替换视频的部分,这些线索简洁地汇总了动态音频事件,并且处理便宜。我们的方法称为Eclipse(带有声音编码的有效剪辑),通过添加一个统一的视听变压器块,将流行的剪辑模型调整为视听视频设置,该块从视频和音频流中捕获互补的提示。除了比仅长期视频的方法快2.92倍和2.34倍的内存效率外,我们的方法还可以在几个不同的远程视频数据集上,例如ActivityNet,QVHighighlights,Youcoook2,Youcoook2,Youcook2,Youcook2,Youcook2,Youcook2,Youcook2,Youcook2, Didemo和Charades。
translated by 谷歌翻译
它仍然是一个管道梦想,电话和AR眼镜的AI助手可以帮助我们的日常生活来解决我们的问题,如“如何调整这款手表日期?”和“如何设置加热持续时间?(指向烤箱的同时)”。传统任务中使用的查询(即视频问题应答,视频检索,时刻定位)通常是有关的,并基于纯文本。相比之下,我们提出了一项名为Cometdancy的问题驱动视频段检索(AQVSR)的新任务。我们每个问题都是一个图像框文本查询,专注于我们日常生活中的物品,并期望从教学视频转录程序段的语料库中检索相关的答案段。为了支持对此AQVSR任务的研究,我们构建一个名为AssionSR的新数据集。我们设计新颖的准则来创造高质量样本。此数据集包含有关1K视频片段的1.4K多模态问题,来自各种日用物品的教学视频。为了解决AQVSR,我们开发了一个称为双重多模式编码器(DME)的简单但有效的模型,显着优于几种基线方法,同时仍然有大型未来改善空间。此外,我们提供了详细的消融分析。我们的代码和数据可以在https://github.com/stanlei52/aqvsr中获得。
translated by 谷歌翻译
Transformer models have shown great success handling long-range interactions, making them a promising tool for modeling video. However they lack inductive biases and scale quadratically with input length. These limitations are further exacerbated when dealing with the high dimensionality introduced with the temporal dimension. While there are surveys analyzing the advances of Transformers for vision, none focus on an in-depth analysis of video-specific designs. In this survey we analyze main contributions and trends of works leveraging Transformers to model video. Specifically, we delve into how videos are handled as input-level first. Then, we study the architectural changes made to deal with video more efficiently, reduce redundancy, re-introduce useful inductive biases, and capture long-term temporal dynamics. In addition we provide an overview of different training regimes and explore effective self-supervised learning strategies for video. Finally, we conduct a performance comparison on the most common benchmark for Video Transformers (i.e., action classification), finding them to outperform 3D ConvNets even with less computational complexity.
translated by 谷歌翻译
有效地对视频中的空间信息进行建模对于动作识别至关重要。为了实现这一目标,最先进的方法通常采用卷积操作员和密集的相互作用模块,例如非本地块。但是,这些方法无法准确地符合视频中的各种事件。一方面,采用的卷积是有固定尺度的,因此在各种尺度的事件中挣扎。另一方面,密集的相互作用建模范式仅在动作 - 欧元零件时实现次优性能,给最终预测带来了其他噪音。在本文中,我们提出了一个统一的动作识别框架,以通过引入以下设计来研究视频内容的动态性质。首先,在提取本地提示时,我们会生成动态尺度的时空内核,以适应各种事件。其次,为了将这些线索准确地汇总为全局视频表示形式,我们建议仅通过变压器在一些选定的前景对象之间进行交互,从而产生稀疏的范式。我们将提出的框架称为事件自适应网络(EAN),因为这两个关键设计都适应输入视频内容。为了利用本地细分市场内的短期运动,我们提出了一种新颖有效的潜在运动代码(LMC)模块,进一步改善了框架的性能。在几个大规模视频数据集上进行了广泛的实验,例如,某种东西,动力学和潜水48,验证了我们的模型是否在低拖鞋上实现了最先进或竞争性的表演。代码可在:https://github.com/tianyuan168326/ean-pytorch中找到。
translated by 谷歌翻译