Meta-learning has been proposed as a framework to address the challenging few-shot learning setting. The key idea is to leverage a large number of similar few-shot tasks in order to learn how to adapt a base-learner to a new task for which only a few labeled samples are available. As deep neural networks (DNNs) tend to overfit using a few samples only, meta-learning typically uses shallow neural networks (SNNs), thus limiting its effectiveness. In this paper we propose a novel few-shot learning method called meta-transfer learning (MTL) which learns to adapt a deep NN for few shot learning tasks. Specifically, meta refers to training multiple tasks, and transfer is achieved by learning scaling and shifting functions of DNN weights for each task. In addition, we introduce the hard task (HT) meta-batch scheme as an effective learning curriculum for MTL. We conduct experiments using (5-class, 1-shot) and (5-class, 5shot) recognition tasks on two challenging few-shot learning benchmarks: miniImageNet and Fewshot-CIFAR100. Extensive comparisons to related works validate that our meta-transfer learning approach trained with the proposed HT meta-batch scheme achieves top performance. An ablation study also shows that both components contribute to fast convergence and high accuracy 1 .Optimize θ by Eq. 3; 5 end 6 Optimize Φ S {1,2} and θ by Eq. 4 and Eq. 5; 7 while not done do 8 Sample class-k in T (te) ; 9 Compute Acc k for T (te) ; 10 end 11 Return class-m with the lowest accuracy Acc m .
translated by 谷歌翻译
Few-shot learning has become essential for producing models that generalize from few examples. In this work, we identify that metric scaling and metric task conditioning are important to improve the performance of few-shot algorithms. Our analysis reveals that simple metric scaling completely changes the nature of few-shot algorithm parameter updates. Metric scaling provides improvements up to 14% in accuracy for certain metrics on the mini-Imagenet 5-way 5-shot classification task. We further propose a simple and effective way of conditioning a learner on the task sample set, resulting in learning a task-dependent metric space. Moreover, we propose and empirically test a practical end-to-end optimization procedure based on auxiliary task co-training to learn a task-dependent metric space. The resulting few-shot learning model based on the task-dependent scaled metric achieves state of the art on mini-Imagenet. We confirm these results on another few-shot dataset that we introduce in this paper based on CIFAR100. Our code is publicly available at https://github.com/ElementAI/TADAM.
translated by 谷歌翻译
很少有视觉识别是指从一些标记实例中识别新颖的视觉概念。通过将查询表示形式与类表征进行比较以预测查询实例的类别,许多少数射击的视觉识别方法采用了基于公制的元学习范式。但是,当前基于度量的方法通常平等地对待所有实例,因此通常会获得有偏见的类表示,考虑到并非所有实例在总结了类级表示的实例级表示时都同样重要。例如,某些实例可能包含无代表性的信息,例如过多的背景和无关概念的信息,这使结果偏差。为了解决上述问题,我们提出了一个新型的基于公制的元学习框架,称为实例自适应类别表示网络(ICRL-net),以进行几次视觉识别。具体而言,我们开发了一个自适应实例重新平衡网络,具有在生成班级表示,通过学习和分配自适应权重的不同实例中的自适应权重时,根据其在相应类的支持集中的相对意义来解决偏见的表示问题。此外,我们设计了改进的双线性实例表示,并结合了两个新型的结构损失,即,阶层内实例聚类损失和阶层间表示区分损失,以进一步调节实例重估过程并完善类表示。我们对四个通常采用的几个基准测试:Miniimagenet,Tieredimagenet,Cifar-FS和FC100数据集进行了广泛的实验。与最先进的方法相比,实验结果证明了我们的ICRL-NET的优势。
translated by 谷歌翻译
Few-shot classification aims to learn a classifier to recognize unseen classes during training with limited labeled examples. While significant progress has been made, the growing complexity of network designs, meta-learning algorithms, and differences in implementation details make a fair comparison difficult. In this paper, we present 1) a consistent comparative analysis of several representative few-shot classification algorithms, with results showing that deeper backbones significantly reduce the performance differences among methods on datasets with limited domain differences, 2) a modified baseline method that surprisingly achieves competitive performance when compared with the state-of-the-art on both the mini-ImageNet and the CUB datasets, and 3) a new experimental setting for evaluating the cross-domain generalization ability for few-shot classification algorithms. Our results reveal that reducing intra-class variation is an important factor when the feature backbone is shallow, but not as critical when using deeper backbones. In a realistic cross-domain evaluation setting, we show that a baseline method with a standard fine-tuning practice compares favorably against other state-of-the-art few-shot learning algorithms.
translated by 谷歌翻译
正规化和转移学习是两种流行的技术,可以增强看不见数据的概念,这是机器学习的根本问题。正则化技术是多功能的,因为它们是任务和架构 - 不可知论,但它们不会利用大量数据。传输学习方法学会从一个域转移到另一个域的知识,但可能无法跨解任务和架构拓展,并且可能会引入适应目标任务的新培训成本。为了弥合两者之间的差距,我们提出了一种可转移的扰动,Metaperturb,这是荟萃学会,以提高看不见数据的泛化性能。 Metaperturb实现为基于集的轻量级网络,该网络是不可知的,其尺寸和输入的顺序,它们在整个层上共享。然后,我们提出了一个元学习框架,共同训练了与异构任务相同的扰动功能。正如Metaperturb在层次和任务的不同分布上训练的集合函数,它可以概括为异构任务和架构。通过将不同的神经架构应用于各种规范和微调,验证对特定源域和架构的Metaperturb培训的疗效和普遍性,验证了特定的源域和架构的疗效和普遍性。结果表明,Metaperturb培训的网络显着优于大多数任务和架构的基线,参数大小的忽略不计,并且没有封闭曲调。
translated by 谷歌翻译
大多数元学习方法都假设存在于可用于基本知识的情节元学习的一组非常大的标记数据。这与更现实的持续学习范例形成对比,其中数据以包含不相交类的任务的形式逐步到达。在本文中,我们考虑了这个增量元学习(IML)的这个问题,其中类在离散任务中逐步呈现。我们提出了一种方法,我们调用了IML,我们称之为eCISODIC重播蒸馏(ERD),该方法将来自当前任务的类混合到当前任务中,当研究剧集时,来自先前任务的类别示例。然后将这些剧集用于知识蒸馏以最大限度地减少灾难性的遗忘。四个数据集的实验表明ERD超越了最先进的。特别是,在一次挑战的单次次数较挑战,长任务序列增量元学习场景中,我们将IML和联合训练与当前状态的3.5%/ 10.1%/ 13.4%之间的差距降低我们在Diered-ImageNet / Mini-ImageNet / CIFAR100上分别为2.6%/ 2.9%/ 5.0%。
translated by 谷歌翻译
少量学习,特别是几秒钟的图像分类,近年来受到了越来越多的关注,并目睹了重大进展。最近的一些研究暗示表明,许多通用技术或“诀窍”,如数据增强,预训练,知识蒸馏和自我监督,可能大大提高了几次学习方法的性能。此外,不同的作品可以采用不同的软件平台,不同的训练计划,不同的骨干架构以及甚至不同的输入图像大小,使得公平的比较困难,从业者与再现性斗争。为了解决这些情况,通过在Pytorch中的同一单个代码库中重新实施17个最新的框架,提出了几次射门学习(Libfewshot)的全面图书馆。此外,基于libfewshot,我们提供多个基准数据集的全面评估,其中包含多个骨干架构,以评估不同培训技巧的常见缺陷和效果。此外,鉴于近期对必要性或未培训机制的必要性怀疑,我们的评估结果表明,特别是当与预训练相结合时,仍然需要这种机制。我们希望我们的工作不仅可以降低初学者的障碍,可以在几次学习上工作,而且还消除了非动力技巧的影响,促进了几枪学习的内在研究。源代码可从https://github.com/rl-vig/libfewshot获取。
translated by 谷歌翻译
Few-shot learning aims to fast adapt a deep model from a few examples. While pre-training and meta-training can create deep models powerful for few-shot generalization, we find that pre-training and meta-training focuses respectively on cross-domain transferability and cross-task transferability, which restricts their data efficiency in the entangled settings of domain shift and task shift. We thus propose the Omni-Training framework to seamlessly bridge pre-training and meta-training for data-efficient few-shot learning. Our first contribution is a tri-flow Omni-Net architecture. Besides the joint representation flow, Omni-Net introduces two parallel flows for pre-training and meta-training, responsible for improving domain transferability and task transferability respectively. Omni-Net further coordinates the parallel flows by routing their representations via the joint-flow, enabling knowledge transfer across flows. Our second contribution is the Omni-Loss, which introduces a self-distillation strategy separately on the pre-training and meta-training objectives for boosting knowledge transfer throughout different training stages. Omni-Training is a general framework to accommodate many existing algorithms. Evaluations justify that our single framework consistently and clearly outperforms the individual state-of-the-art methods on both cross-task and cross-domain settings in a variety of classification, regression and reinforcement learning problems.
translated by 谷歌翻译
The focus of recent meta-learning research has been on the development of learning algorithms that can quickly adapt to test time tasks with limited data and low computational cost. Few-shot learning is widely used as one of the standard benchmarks in meta-learning. In this work, we show that a simple baseline: learning a supervised or selfsupervised representation on the meta-training set, followed by training a linear classifier on top of this representation, outperforms state-of-the-art few-shot learning methods. An additional boost can be achieved through the use of selfdistillation. This demonstrates that using a good learned embedding model can be more effective than sophisticated meta-learning algorithms. We believe that our findings motivate a rethinking of few-shot image classification benchmarks and the associated role of meta-learning algorithms.
translated by 谷歌翻译
少量分类需要调整从大型注释的基础数据集中学到的知识来识别新颖的看不见的类,每个类别由少数标记的示例表示。在这样的场景中,预先绘制大容量在大型数据集上的网络,然后在少数示例下向少量抵消导致严重的过度拟合。同时,在从大型标记数据集中学到的“冷冻”特征的顶部培训一个简单的线性分类器无法使模型调整到新型类的属性,有效地诱导底部。在本文中,我们向这两种流行的策略提出了一种替代方法。首先,我们的方法使用在新颖类上培训的线性分类器来伪标签整个大型数据集。这有效地“幻觉”在大型数据集中的新型类别,尽管基本数据库中未存在的新类别(新颖和基类是不相交的)。然后,除了在新型数据集上的标准交叉熵损失之外,它将在伪标记的基础示例上具有蒸馏损失的整个模型。这一步骤有效地训练了网络,识别对新型类别识别的上下文和外观提示,而是使用整个大规模基础数据集,从而克服了几次拍摄学习的固有数据稀缺问题。尽管这种方法的简单性,但我们表明我们的方法在四个成熟的少量分类基准上表现出最先进的。
translated by 谷歌翻译
元学习已成为几乎没有图像分类的实用方法,在该方法中,“学习分类器的策略”是在标记的基础类别上进行元学习的,并且可以应用于具有新颖类的任务。我们删除了基类标签的要求,并通过无监督的元学习(UML)学习可通用的嵌入。具体而言,任务发作是在元训练过程中使用未标记的基本类别的数据增强构建的,并且我们将基于嵌入式的分类器应用于新的任务,并在元测试期间使用标记的少量示例。我们观察到两个元素在UML中扮演着重要角色,即进行样本任务和衡量实例之间的相似性的方法。因此,我们获得了具有两个简单修改的​​强基线 - 一个足够的采样策略,每情节有效地构建多个任务以及半分解的相似性。然后,我们利用来自两个方向的任务特征以获得进一步的改进。首先,合成的混淆实例被合并以帮助提取更多的判别嵌入。其次,我们利用额外的特定任务嵌入转换作为元训练期间的辅助组件,以促进预先适应的嵌入式的概括能力。几乎没有学习基准的实验证明,我们的方法比以前的UML方法优于先前的UML方法,并且比其监督变体获得了可比甚至更好的性能。
translated by 谷歌翻译
We present a conceptually simple, flexible, and general framework for few-shot learning, where a classifier must learn to recognise new classes given only few examples from each. Our method, called the Relation Network (RN), is trained end-to-end from scratch. During meta-learning, it learns to learn a deep distance metric to compare a small number of images within episodes, each of which is designed to simulate the few-shot setting. Once trained, a RN is able to classify images of new classes by computing relation scores between query images and the few examples of each new class without further updating the network. Besides providing improved performance on few-shot learning, our framework is easily extended to zero-shot learning. Extensive experiments on five benchmarks demonstrate that our simple approach provides a unified and effective approach for both of these two tasks.
translated by 谷歌翻译
This work proposes Multi-task Meta Learning (MTML), integrating two learning paradigms Multi-Task Learning (MTL) and meta learning, to bring together the best of both worlds. In particular, it focuses simultaneous learning of multiple tasks, an element of MTL and promptly adapting to new tasks with fewer data, a quality of meta learning. It is important to highlight that we focus on heterogeneous tasks, which are of distinct kind, in contrast to typically considered homogeneous tasks (e.g., if all tasks are classification or if all tasks are regression tasks). The fundamental idea is to train a multi-task model, such that when an unseen task is introduced, it can learn in fewer steps whilst offering a performance at least as good as conventional single task learning on the new task or inclusion within the MTL. By conducting various experiments, we demonstrate this paradigm on two datasets and four tasks: NYU-v2 and the taskonomy dataset for which we perform semantic segmentation, depth estimation, surface normal estimation, and edge detection. MTML achieves state-of-the-art results for most of the tasks. Although semantic segmentation suffers quantitatively, our MTML method learns to identify segmentation classes absent in the pseudo labelled ground truth of the taskonomy dataset.
translated by 谷歌翻译
共享初始化参数的元学习已显示在解决少量学习任务方面非常有效。然而,将框架扩展到许多射击场景,这可能进一步提高其实用性,这一切相对忽略了由于内梯度步长的长链中的元学习的技术困难。在本文中,我们首先表明允许元学习者采取更多的内梯度步骤更好地捕获异构和大规模任务分布的结构,从而导致获得更好的初始化点。此外,为了增加元更新的频率,即使是过度长的内部优化轨迹,我们建议估计关于初始化参数的改变的任务特定参数的所需移位。通过这样做,我们可以随意增加元更新的频率,从而大大提高了元级收敛以及学习初始化的质量。我们验证了我们在异构的大规模任务集中验证了方法,并表明该算法在泛型性能和收敛方面以及多任务学习和微调基线方面主要优于先前的一阶元学习方法。 。
translated by 谷歌翻译
Many meta-learning approaches for few-shot learning rely on simple base learners such as nearest-neighbor classifiers. However, even in the few-shot regime, discriminatively trained linear predictors can offer better generalization. We propose to use these predictors as base learners to learn representations for few-shot learning and show they offer better tradeoffs between feature size and performance across a range of few-shot recognition benchmarks. Our objective is to learn feature embeddings that generalize well under a linear classification rule for novel categories. To efficiently solve the objective, we exploit two properties of linear classifiers: implicit differentiation of the optimality conditions of the convex problem and the dual formulation of the optimization problem. This allows us to use highdimensional embeddings with improved generalization at a modest increase in computational overhead. Our approach, named MetaOptNet, achieves state-of-the-art performance on miniImageNet, tieredImageNet, CIFAR-FS, and FC100 few-shot learning benchmarks. Our code is available online 1 .
translated by 谷歌翻译
很少有射击学习(FSL)旨在使用有限标记的示例生成分类器。许多现有的作品采用了元学习方法,构建了一些可以从几个示例中学习以生成分类器的学习者。通常,几次学习者是通过依次对多个几次射击任务进行采样并优化几杆学习者在为这些任务生成分类器时的性能来构建或进行元训练的。性能是通过结果分类器对这些任务的测试(即查询)示例进行分类的程度来衡量的。在本文中,我们指出了这种方法的两个潜在弱点。首先,采样的查询示例可能无法提供足够的监督来进行元训练少数学习者。其次,元学习的有效性随着射击数量的增加而急剧下降。为了解决这些问题,我们为少数学习者提出了一个新颖的元训练目标,这是为了鼓励少数学习者生成像强大分类器一样执行的分类器。具体而言,我们将每个采样的几个弹药任务与强大的分类器相关联,该分类器接受了充分的标记示例。强大的分类器可以看作是目标分类器,我们希望在几乎没有示例的情况下生成的几个学习者,我们使用强大的分类器来监督少数射击学习者。我们提出了一种构建强分类器的有效方法,使我们提出的目标成为现有基于元学习的FSL方法的易于插入的术语。我们与许多代表性的元学习方法相结合验证了我们的方法,Lastshot。在几个基准数据集中,我们的方法可导致各种任务的显着改进。更重要的是,通过我们的方法,基于元学习的FSL方法可以在不同数量的镜头上胜过基于非Meta学习的方法。
translated by 谷歌翻译
元学习方法旨在构建能够快速适应低数据制度的新任务的学习算法。这种算法的主要基准之一是几次学习问题。在本文中,我们调查了在培训期间采用多任务方法的标准元学习管道的修改。该提出的方法同时利用来自常见损​​失函数中的几个元训练任务的信息。每个任务在损耗功能中的影响由相应的重量控制。正确优化这些权重可能对整个模型的训练产生很大影响,并且可能会提高测试时间任务的质量。在这项工作中,我们提出并调查了使用同时扰动随机近似(SPSA)方法的方法的使用方法,用于元列车任务权重优化。我们还将提出的算法与基于梯度的方法进行了比较,发现随机近似表明了测试时间最大的质量增强。提出的多任务修改可以应用于使用元学习管道的几乎所有方法。在本文中,我们研究了这种修改对CiFar-FS,FC100,TieredimAgenet和MiniimAgenet几秒钟学习基准的原型网络和模型 - 不可知的元学习算法。在这些实验期间,多任务修改已经证明了对原始方法的改进。所提出的SPSA跟踪算法显示了对最先进的元学习方法具有竞争力的最大精度提升。我们的代码可在线获取。
translated by 谷歌翻译
整合不同域的知识是人类学习的重要特征。学习范式如转移学习,元学习和多任务学习,通过利用新任务的先验知识,鼓励更快的学习和新任务的良好普遍来反映人类学习过程。本文提供了这些学习范例的详细视图以及比较分析。学习算法的弱点是另一个的力量,从而合并它们是文献中的一种普遍的特征。这项工作提供了对文章的文献综述,这些文章融合了两种算法来完成多个任务。这里还介绍了全球通用学习网络,在此介绍了元学习,转移学习和多任务学习的集合,以及一些开放的研究问题和未来研究的方向。
translated by 谷歌翻译
跨域很少的学习(CD-FSL)最近几乎没有目标样本在源和目标域之间存在极端差异,最近引起了极大的关注。对于CD-FSL,最近的研究通常开发了基于转移学习的方法,该方法预先培训了受欢迎的标记源域数据集的神经网络,然后将其传输到目标域数据。尽管标记的数据集可以为目标数据提供合适的初始参数,但源和目标之间的域差异可能会阻碍目标域上的微调。本文提出了一种简单而功能强大的方法,该方法在适应目标数据之前将源域上拟合的参数重新传递。重新运行重置源预训练模型的特定于源特异性参数,从而促进了目标域上的微调,从而改善了几乎没有射击性能。
translated by 谷歌翻译
大多数现有的作品在少数拍摄对象检测(FSOD)上的工作重点是从类似域中进行预训练和几乎没有弹出的学习数据集的设置。但是,在多个域中,很少有射击算法很重要。因此,评估需要反映广泛的应用。我们提出了一个多域数少数对象检测(MOFSOD)基准,该基准由来自各个域的10个数据集组成,以评估FSOD算法。我们全面分析了冷冻层,不同的体系结构和不同的预训练数据集对FSOD性能的影响。我们的经验结果表明,以前的作品中尚未探索过的几个关键因素:1)与以前的信念相反,在多域基准测试中,微调(FT)是FSOD的强大基线,在PAR上表现或更好最先进的(SOTA)算法; 2)利用FT作为基线使我们能够探索多个体系结构,我们发现它们对下游的几杆任务产生重大影响,即使具有类似的训练性能; 3)通过取消预训练和几乎没有学习的学习,MOFSOD使我们能够探索不同的预训练数据集的影响,并且正确的选择可以显着提高下游任务的性能。基于这些发现,我们列出了可能提高FSOD性能的调查途径,并对现有算法进行了两次简单修改,这些算法导致MOFSOD基准上的SOTA性能。该代码可在https://github.com/amazon-research/few-shot-object-detection-benchmark上获得。
translated by 谷歌翻译