预训练(PT),然后进行微调(FT)是培训神经网络的有效方法,并导致许多域中的显着性能改进。 PT可以包含各种设计选择,如任务和数据重新免除策略,增强政策和噪声模型,所有这些都可以显着影响所学到的陈述的质量。因此,必须适当地调整这些策略引入的超级参数。但是,设置这些超参数的值是具有挑战性的。大多数现有方法都努力缩放到高维度,太慢和内存密集,或者不能直接应用于两级PT和FT学习过程。在这项工作中,我们提出了一种基于渐变的梯度的算法,以Meta-Learn PT HyperParameters。我们将PT HyperParameter优化问题正式化,并提出了一种通过展开优化结合隐式分化和反向来获得PT超级参数梯度的新方法。我们展示了我们的方法可以提高两个真实域的预测性能。首先,我们优化高维任务加权超参数,用于多任务对蛋白质 - 蛋白质相互作用图进行培训,并将Auroc提高至3.9%。其次,我们在心电图数据上优化用于SIMCLR的SIMCLR的数据增强神经网络,并将Auroc提高到1.9%。
translated by 谷歌翻译
This paper presents SimCLR: a simple framework for contrastive learning of visual representations. We simplify recently proposed contrastive selfsupervised learning algorithms without requiring specialized architectures or a memory bank. In order to understand what enables the contrastive prediction tasks to learn useful representations, we systematically study the major components of our framework. We show that (1) composition of data augmentations plays a critical role in defining effective predictive tasks, (2) introducing a learnable nonlinear transformation between the representation and the contrastive loss substantially improves the quality of the learned representations, and (3) contrastive learning benefits from larger batch sizes and more training steps compared to supervised learning. By combining these findings, we are able to considerably outperform previous methods for self-supervised and semi-supervised learning on ImageNet. A linear classifier trained on self-supervised representations learned by Sim-CLR achieves 76.5% top-1 accuracy, which is a 7% relative improvement over previous state-ofthe-art, matching the performance of a supervised ResNet-50. When fine-tuned on only 1% of the labels, we achieve 85.8% top-5 accuracy, outperforming AlexNet with 100× fewer labels. 1
translated by 谷歌翻译
We propose an algorithm for inexpensive gradient-based hyperparameter optimization that combines the implicit function theorem (IFT) with efficient inverse Hessian approximations. We present results on the relationship between the IFT and differentiating through optimization, motivating our algorithm. We use the proposed approach to train modern network architectures with millions of weights and millions of hyperparameters. We learn a data-augmentation networkwhere every weight is a hyperparameter tuned for validation performance-that outputs augmented training examples; we learn a distilled dataset where each feature in each datapoint is a hyperparameter; and we tune millions of regularization hyperparameters. Jointly tuning weights and hyperparameters with our approach is only a few times more costly in memory and compute than standard training.• We scale IFT-based hyperparameter optimization to modern, large neural architectures, including AlexNet and LSTM-based language models.• We demonstrate several uses for fitting hyperparameters almost as easily as weights, including perparameter regularization, data distillation, and learned-from-scratch data augmentation methods.• We explore how training-validation splits should change when tuning many hyperparameters.
translated by 谷歌翻译
Few-shot learning (FSL) is a central problem in meta-learning, where learners must efficiently learn from few labeled examples. Within FSL, feature pre-training has recently become an increasingly popular strategy to significantly improve generalization performance. However, the contribution of pre-training is often overlooked and understudied, with limited theoretical understanding of its impact on meta-learning performance. Further, pre-training requires a consistent set of global labels shared across training tasks, which may be unavailable in practice. In this work, we address the above issues by first showing the connection between pre-training and meta-learning. We discuss why pre-training yields more robust meta-representation and connect the theoretical analysis to existing works and empirical results. Secondly, we introduce Meta Label Learning (MeLa), a novel meta-learning algorithm that learns task relations by inferring global labels across tasks. This allows us to exploit pre-training for FSL even when global labels are unavailable or ill-defined. Lastly, we introduce an augmented pre-training procedure that further improves the learned meta-representation. Empirically, MeLa outperforms existing methods across a diverse range of benchmarks, in particular under a more challenging setting where the number of training tasks is limited and labels are task-specific. We also provide extensive ablation study to highlight its key properties.
translated by 谷歌翻译
We introduce Bootstrap Your Own Latent (BYOL), a new approach to self-supervised image representation learning. BYOL relies on two neural networks, referred to as online and target networks, that interact and learn from each other. From an augmented view of an image, we train the online network to predict the target network representation of the same image under a different augmented view. At the same time, we update the target network with a slow-moving average of the online network. While state-of-the art methods rely on negative pairs, BYOL achieves a new state of the art without them. BYOL reaches 74.3% top-1 classification accuracy on ImageNet using a linear evaluation with a ResNet-50 architecture and 79.6% with a larger ResNet. We show that BYOL performs on par or better than the current state of the art on both transfer and semi-supervised benchmarks. Our implementation and pretrained models are given on GitHub. 3 * Equal contribution; the order of first authors was randomly selected.
translated by 谷歌翻译
半监督学习(SSL)是规避建立高性能模型的昂贵标签成本的最有前途的范例之一。大多数现有的SSL方法常规假定标记和未标记的数据是从相同(类)分布中绘制的。但是,在实践中,未标记的数据可能包括课外样本;那些不能从标签数据中的封闭类中的单热编码标签,即未标记的数据是开放设置。在本文中,我们介绍了Opencos,这是一种基于最新的自我监督视觉表示学习框架来处理这种现实的半监督学习方案。具体而言,我们首先观察到,可以通过自我监督的对比度学习有效地识别开放式未标记数据集中的类外样本。然后,Opencos利用此信息来克服现有的最新半监督方法中的故障模式,通过利用一式旋转伪标签和软标签来为已识别的识别和外部未标记的标签数据分别。我们广泛的实验结果表明了Opencos的有效性,可以修复最新的半监督方法,适合涉及开放式无标记数据的各种情况。
translated by 谷歌翻译
我们从第一批原则提供了一个理论分析,该原则在预训练和微调性能的关系归纳偏差之间建立了新的联系,同时提供了一般预训练模型的延长视图。我们进一步探讨了现有的预训练方法如何强加相关的归纳偏差,发现绝大多数现有方法几乎专注于以帧内方式建模的关系,而不是每种样本方式。我们建立了这些调查结果,这些发现与跨越3个数据模式和10个下游任务的标准基准测试。这些调查验证了我们的理论分析,并提供了一种方法,以产生新的预训练方法,该方法与现有的方法符合用户指定的关系图。
translated by 谷歌翻译
对表格数据的深度学习的最新工作表明了深层表格模型的强劲表现,通常会弥合梯度增强的决策树和神经网络之间的差距。除了准确性之外,神经模型的主要优点是它们学习可重复使用的功能,并且在新域中很容易进行微调。该属性通常在计算机视觉和自然语言应用中被利用,在特定于任务的培训数据稀缺时,转移学习是必不可少的。在这项工作中,我们证明上游数据使表格神经网络比广泛使用的GBDT模型具有决定性的优势。我们为表格转移学习提出了一个现实的医学诊断基准,并提出了使用上游数据来通过各种表格神经网络体系结构来提高性能的方法指南。最后,我们为上游和下游特征集不同的情况提出了一种伪特征方法,在现实世界中,特定于表格的问题广泛。我们的代码可在https://github.com/levinroman/tabular-transfer-learning上找到。
translated by 谷歌翻译
差异隐私(DP)提供了正式的隐私保证,以防止对手可以访问机器学习模型,从而从提取有关单个培训点的信息。最受欢迎的DP训练方法是差异私有随机梯度下降(DP-SGD),它通过在训练过程中注入噪声来实现这种保护。然而,以前的工作发现,DP-SGD通常会导致标准图像分类基准的性能显着降解。此外,一些作者假设DP-SGD在大型模型上固有地表现不佳,因为保留隐私所需的噪声规范与模型维度成正比。相反,我们证明了过度参数化模型上的DP-SGD可以比以前想象的要好得多。将仔细的超参数调整与简单技术结合起来,以确保信号传播并提高收敛速率,我们获得了新的SOTA,而没有额外数据的CIFAR-10,在81.4%的81.4%下(8,10^{ - 5}) - 使用40 -layer wide-Resnet,比以前的SOTA提高了71.7%。当对预训练的NFNET-F3进行微调时,我们在ImageNet(0.5,8*10^{ - 7})下达到了83.8%的TOP-1精度。此外,我们还在(8,8 \ cdot 10^{ - 7})下达到了86.7%的TOP-1精度,DP仅比当前的非私人SOTA仅4.3%。我们认为,我们的结果是缩小私人图像分类和非私有图像分类之间准确性差距的重要一步。
translated by 谷歌翻译
我们介绍了SubGD,这是一种新颖的几声学习方法,基于最近的发现,即随机梯度下降更新往往生活在低维参数子空间中。在实验和理论分析中,我们表明模型局限于合适的预定义子空间,可以很好地推广用于几次学习。合适的子空间符合给定任务的三个标准:IT(a)允许通过梯度流量减少训练误差,(b)导致模型良好的模型,并且(c)可以通过随机梯度下降来识别。 SUBGD从不同任务的更新说明的自动相关矩阵的特征组合中标识了这些子空间。明确的是,我们可以识别出低维合适的子空间,用于对动态系统的几次学习,而动态系统具有不同的属性,这些属性由分析系统描述的一个或几个参数描述。这种系统在科学和工程领域的现实应用程序中无处不在。我们在实验中证实了SubGD在三个不同的动态系统问题设置上的优势,在样本效率和性能方面,均超过了流行的几次学习方法。
translated by 谷歌翻译
This work tackles the problem of semi-supervised learning of image classifiers. Our main insight is that the field of semi-supervised learning can benefit from the quickly advancing field of self-supervised visual representation learning. Unifying these two approaches, we propose the framework of self-supervised semi-supervised learning (S 4 L) and use it to derive two novel semi-supervised image classification methods. We demonstrate the effectiveness of these methods in comparison to both carefully tuned baselines, and existing semi-supervised learning methods. We then show that S 4 L and existing semi-supervised methods can be jointly trained, yielding a new state-of-the-art result on semi-supervised ILSVRC-2012 with 10% of labels.
translated by 谷歌翻译
贝叶斯优化(BO)已成为许多昂贵现实世界功能的全球优化的流行策略。与普遍认为BO适合优化黑框功能的信念相反,它实际上需要有关这些功能特征的域知识才能成功部署BO。这样的领域知识通常表现在高斯流程先验中,这些先验指定了有关功能的初始信念。但是,即使有专家知识,选择先验也不是一件容易的事。对于复杂的机器学习模型上的超参数调谐问题尤其如此,在这种模型中,调整目标的景观通常很难理解。我们寻求一种设定这些功能性先验的替代实践。特别是,我们考虑了从类似功能的数据中,使我们可以先验地进行更紧密的分布。从理论上讲,我们与预先训练的先验表示对BO的遗憾。为了验证我们在现实的模型培训设置中的方法,我们通过训练在流行图像和文本数据集上的数以万计的近状态模型配置来收集了大型多任务超参数调谐数据集,以及蛋白质序列数据集。我们的结果表明,平均而言,我们的方法能够比最佳竞争方法更有效地定位良好的超参数。
translated by 谷歌翻译
自我监督的学习提供了一个有希望的途径,消除了在图形上的代表学习中的昂贵标签信息的需求。然而,为了实现最先进的性能,方法通常需要大量的负例,并依赖于复杂的增强。这可能是昂贵的,特别是对于大图。为了解决这些挑战,我们介绍了引导的图形潜伏(BGRL) - 通过预测输入的替代增强来学习图表表示学习方法。 BGRL仅使用简单的增强,并减轻了对否定例子对比的需求,因此通过设计可扩展。 BGRL胜过或匹配现有的几种建立的基准,同时降低了内存成本的2-10倍。此外,我们表明,BGR1可以缩放到半监督方案中的数亿个节点的极大的图表 - 实现最先进的性能并改善监督基线,其中表示仅通过标签信息而塑造。特别是,我们的解决方案以BGRL为中心,将kdd杯2021的开放图基准的大规模挑战组成了一个获奖条目,在比所有先前可用的基准更大的级别的图形订单上,从而展示了我们方法的可扩展性和有效性。
translated by 谷歌翻译
二阶优化器被认为具有加快神经网络训练的潜力,但是由于曲率矩阵的尺寸巨大,它们通常需要近似值才能计算。最成功的近似家庭是Kronecker因块状曲率估计值(KFAC)。在这里,我们结合了先前工作的工具,以评估确切的二阶更新和仔细消融以建立令人惊讶的结果:由于其近似值,KFAC与二阶更新无关,尤其是,它极大地胜过真实的第二阶段更新。订单更新。这一挑战广泛地相信,并立即提出了为什么KFAC表现如此出色的问题。为了回答这个问题,我们提出了强烈的证据,表明KFAC近似于一阶算法,该算法在神经元上执行梯度下降而不是权重。最后,我们表明,这种优化器通常会在计算成本和数据效率方面改善KFAC。
translated by 谷歌翻译
We introduce a framework based on bilevel programming that unifies gradient-based hyperparameter optimization and meta-learning. We show that an approximate version of the bilevel problem can be solved by taking into explicit account the optimization dynamics for the inner objective. Depending on the specific setting, the outer variables take either the meaning of hyperparameters in a supervised learning problem or parameters of a meta-learner. We provide sufficient conditions under which solutions of the approximate problem converge to those of the exact problem. We instantiate our approach for meta-learning in the case of deep learning where representation layers are treated as hyperparameters shared across a set of training episodes. In experiments, we confirm our theoretical findings, present encouraging results for few-shot learning and contrast the bilevel approach against classical approaches for learning-to-learn.
translated by 谷歌翻译
通过强制了解输入中某些转换保留输出的知识,通常应用数据增强来提高深度学习的性能。当前,使用的数据扩大是通过人类的努力和昂贵的交叉验证来选择的,这使得应用于新数据集很麻烦。我们开发了一种基于梯度的方便方法,用于在没有验证数据的情况下和在深度神经网络的培训期间选择数据增强。我们的方法依赖于措辞增强作为先前分布的不变性,并使用贝叶斯模型选择学习,该模型已被证明在高斯过程中起作用,但尚未用于深神经网络。我们提出了一个可区分的Kronecker因拉普拉斯(Laplace)近似与边际可能性的近似,作为我们的目标,可以在没有人类监督或验证数据的情况下优化。我们表明,我们的方法可以成功地恢复数据中存在的不断增长,这提高了图像数据集的概括和数据效率。
translated by 谷歌翻译
Jitendra Malik once said, "Supervision is the opium of the AI researcher". Most deep learning techniques heavily rely on extreme amounts of human labels to work effectively. In today's world, the rate of data creation greatly surpasses the rate of data annotation. Full reliance on human annotations is just a temporary means to solve current closed problems in AI. In reality, only a tiny fraction of data is annotated. Annotation Efficient Learning (AEL) is a study of algorithms to train models effectively with fewer annotations. To thrive in AEL environments, we need deep learning techniques that rely less on manual annotations (e.g., image, bounding-box, and per-pixel labels), but learn useful information from unlabeled data. In this thesis, we explore five different techniques for handling AEL.
translated by 谷歌翻译
这是一门专门针对STEM学生开发的介绍性机器学习课程。我们的目标是为有兴趣的读者提供基础知识,以在自己的项目中使用机器学习,并将自己熟悉术语作为进一步阅读相关文献的基础。在这些讲义中,我们讨论受监督,无监督和强化学习。注释从没有神经网络的机器学习方法的说明开始,例如原理分析,T-SNE,聚类以及线性回归和线性分类器。我们继续介绍基本和先进的神经网络结构,例如密集的进料和常规神经网络,经常性的神经网络,受限的玻尔兹曼机器,(变性)自动编码器,生成的对抗性网络。讨论了潜在空间表示的解释性问题,并使用梦和对抗性攻击的例子。最后一部分致力于加强学习,我们在其中介绍了价值功能和政策学习的基本概念。
translated by 谷歌翻译
共享初始化参数的元学习已显示在解决少量学习任务方面非常有效。然而,将框架扩展到许多射击场景,这可能进一步提高其实用性,这一切相对忽略了由于内梯度步长的长链中的元学习的技术困难。在本文中,我们首先表明允许元学习者采取更多的内梯度步骤更好地捕获异构和大规模任务分布的结构,从而导致获得更好的初始化点。此外,为了增加元更新的频率,即使是过度长的内部优化轨迹,我们建议估计关于初始化参数的改变的任务特定参数的所需移位。通过这样做,我们可以随意增加元更新的频率,从而大大提高了元级收敛以及学习初始化的质量。我们验证了我们在异构的大规模任务集中验证了方法,并表明该算法在泛型性能和收敛方面以及多任务学习和微调基线方面主要优于先前的一阶元学习方法。 。
translated by 谷歌翻译
A core capability of intelligent systems is the ability to quickly learn new tasks by drawing on prior experience. Gradient (or optimization) based meta-learning has recently emerged as an effective approach for few-shot learning. In this formulation, meta-parameters are learned in the outer loop, while task-specific models are learned in the inner-loop, by using only a small amount of data from the current task. A key challenge in scaling these approaches is the need to differentiate through the inner loop learning process, which can impose considerable computational and memory burdens. By drawing upon implicit differentiation, we develop the implicit MAML algorithm, which depends only on the solution to the inner level optimization and not the path taken by the inner loop optimizer. This effectively decouples the meta-gradient computation from the choice of inner loop optimizer. As a result, our approach is agnostic to the choice of inner loop optimizer and can gracefully handle many gradient steps without vanishing gradients or memory constraints. Theoretically, we prove that implicit MAML can compute accurate meta-gradients with a memory footprint no more than that which is required to compute a single inner loop gradient and at no overall increase in the total computational cost. Experimentally, we show that these benefits of implicit MAML translate into empirical gains on few-shot image recognition benchmarks.
translated by 谷歌翻译