识别网络空间中的异常多媒体流量是分布式服务系统,多代网络和未来所有互联网的大挑战。这封信探讨了Graynet中的多方隐私学习模型的元概括,以提高异常多媒体流量识别的性能。 Graynet中的MultiParty Privacy学习模型是通过交换保留私有数据的多群参数更新来划分,分布和培训的全局共享模型。元概述是指发现学习模型的固有属性,以减少其泛化误差。在实验中,如下测试了三个元概括原理。通过更改字节级嵌入的维度,减少了磨略中的多派隐私学习模型的泛化误差。在此之后,通过调整深度来减少错误以提取分组级别功能。最后,通过调整用于预处理流量级数据的支持集的大小来减少错误。实验结果表明,该提议优于识别异常多媒体流量的最先进的学习模型。
translated by 谷歌翻译
这项工作调查了联合学习的可能性,了解IOT恶意软件检测,并研究该新学习范式固有的安全问题。在此上下文中,呈现了一种使用联合学习来检测影响物联网设备的恶意软件的框架。 n-baiot,一个数据集在由恶意软件影响的几个实际物联网设备的网络流量,已被用于评估所提出的框架。经过培训和评估监督和无监督和无监督的联邦模型(多层Perceptron和AutoEncoder)能够检测到MATEN和UNEEN的IOT设备的恶意软件,并进行了培训和评估。此外,它们的性能与两种传统方法进行了比较。第一个允许每个参与者在本地使用自己的数据局面训练模型,而第二个包括使参与者与负责培训全局模型的中央实体共享他们的数据。这种比较表明,在联合和集中方法中完成的使用更多样化和大数据,对模型性能具有相当大的积极影响。此外,联邦模型,同时保留了参与者的隐私,将类似的结果与集中式相似。作为额外的贡献,并衡量联邦方法的稳健性,已经考虑了具有若干恶意参与者中毒联邦模型的对抗性设置。即使使用单个对手,大多数联邦学习算法中使用的基线模型聚合平均步骤也很容易受到不同攻击的影响。因此,在相同的攻击方案下评估了作为对策的其他模型聚合函数的性能。这些职能对恶意参与者提供了重大改善,但仍然需要更多的努力来使联邦方法强劲。
translated by 谷歌翻译
为了满足下一代无线通信网络的极其异构要求,研究界越来越依赖于使用机器学习解决方案进行实时决策和无线电资源管理。传统的机器学习采用完全集中的架构,其中整个培训数据在一个节点上收集,即云服务器,显着提高了通信开销,并提高了严重的隐私问题。迄今为止,最近提出了作为联合学习(FL)称为联合学习的分布式机器学习范式。在FL中,每个参与边缘设备通过使用自己的培训数据列举其本地模型。然后,通过无线信道,本地训练模型的权重或参数被发送到中央ps,聚合它们并更新全局模型。一方面,FL对优化无线通信网络的资源起着重要作用,另一方面,无线通信对于FL至关重要。因此,FL和无线通信之间存在“双向”关系。虽然FL是一个新兴的概念,但许多出版物已经在FL的领域发表了发布及其对下一代无线网络的应用。尽管如此,我们注意到没有任何作品突出了FL和无线通信之间的双向关系。因此,本调查纸的目的是通过提供关于FL和无线通信之间的相互依存性的及时和全面的讨论来弥合文学中的这种差距。
translated by 谷歌翻译
联合学习(FL)和分裂学习(SL)是两种新兴的协作学习方法,可能会极大地促进物联网(IoT)中无处不在的智能。联合学习使机器学习(ML)模型在本地培训的模型使用私人数据汇总为全球模型。分裂学习使ML模型的不同部分可以在学习框架中对不同工人进行协作培训。联合学习和分裂学习,每个学习都有独特的优势和各自的局限性,可能会相互补充,在物联网中无处不在的智能。因此,联合学习和分裂学习的结合最近成为一个活跃的研究领域,引起了广泛的兴趣。在本文中,我们回顾了联合学习和拆分学习方面的最新发展,并介绍了有关最先进技术的调查,该技术用于将这两种学习方法组合在基于边缘计算的物联网环境中。我们还确定了一些开放问题,并讨论了该领域未来研究的可能方向,希望进一步引起研究界对这个新兴领域的兴趣。
translated by 谷歌翻译
更广泛的覆盖范围和更好的解决方案延迟减少5G需要其与多访问边缘计算(MEC)技术的组合。分散的深度学习(DDL),如联邦学习和群体学习作为对数百万智能边缘设备的隐私保留数据处理的有希望的解决方案,利用了本地客户端网络内的多层神经网络的分布式计算,而无需披露原始本地培训数据。值得注意的是,在金融和医疗保健等行业中,谨慎维护交易和个人医疗记录的敏感数据,DDL可以促进这些研究所的合作,以改善培训模型的性能,同时保护参与客户的数据隐私。在本调查论文中,我们展示了DDL的技术基础,通过分散的学习使社会许多人走。此外,我们通过概述DDL的挑战以及从新颖的沟通效率和可靠性的观点来概述目前本领域最先进的全面概述。
translated by 谷歌翻译
网络威胁情报(CTI)共享是减少攻击者和捍卫者之间信息不对称的重要活动。但是,由于数据共享和机密性之间的紧张关系,这项活动带来了挑战,这导致信息保留通常会导致自由骑士问题。因此,共享的信息仅代表冰山一角。当前的文献假设访问包含所有信息的集中数据库,但是由于上述张力,这并不总是可行的。这会导致不平衡或不完整的数据集,需要使用技术扩展它们。我们展示了这些技术如何导致结果和误导性能期望。我们提出了一个新颖的框架,用于从分布式数据中提取有关事件,漏洞和妥协指标的分布式数据,并与恶意软件信息共享平台(MISP)一起证明其在几种实际情况下的使用。提出和讨论了CTI共享的政策影响。拟议的系统依赖于隐私增强技术和联合处理的有效组合。这使组织能够控制其CTI,并最大程度地减少暴露或泄漏的风险,同时为共享的好处,更准确和代表性的结果以及更有效的预测性和预防性防御能力。
translated by 谷歌翻译
随着物联网,AI和ML/DL算法的出现,数据驱动的医疗应用已成为一种有前途的工具,用于从医学数据设计可靠且可扩展的诊断和预后模型。近年来,这引起了从学术界到工业的广泛关注。这无疑改善了医疗保健提供的质量。但是,由于这些基于AI的医疗应用程序在满足严格的安全性,隐私和服务标准(例如低延迟)方面的困难,因此仍然采用较差。此外,医疗数据通常是分散的和私人的,这使得在人群之间产生强大的结果具有挑战性。联邦学习(FL)的最新发展使得以分布式方式训练复杂的机器学习模型成为可能。因此,FL已成为一个积极的研究领域,尤其是以分散的方式处理网络边缘的医疗数据,以保护隐私和安全问题。为此,本次调查论文重点介绍了数据共享是重大负担的医疗应用中FL技术的当前和未来。它还审查并讨论了当前的研究趋势及其设计可靠和可扩展模型的结果。我们概述了FL将军的统计问题,设备挑战,安全性,隐私问题及其在医疗领域的潜力。此外,我们的研究还集中在医疗应用上,我们重点介绍了全球癌症的负担以及有效利用FL来开发计算机辅助诊断工具来解决这些诊断工具。我们希望这篇评论是一个检查站,以彻底的方式阐明现有的最新最新作品,并为该领域提供开放的问题和未来的研究指示。
translated by 谷歌翻译
使用人工智能(AI)赋予无线网络中数据量的前所未有的数据量激增,为提供无处不在的数据驱动智能服务而开辟了新的视野。通过集中收集数据集和培训模型来实现传统的云彩中心学习(ML)基础的服务。然而,这种传统的训练技术包括两个挑战:(i)由于数据通信增加而导致的高通信和能源成本,(ii)通过允许不受信任的各方利用这些信息来威胁数据隐私。最近,鉴于这些限制,一种新兴的新兴技术,包括联合学习(FL),以使ML带到无线网络的边缘。通过以分布式方式培训全局模型,可以通过FL Server策划的全局模型来提取数据孤岛的好处。 FL利用分散的数据集和参与客户的计算资源,在不影响数据隐私的情况下开发广义ML模型。在本文中,我们介绍了对FL的基本面和能够实现技术的全面调查。此外,提出了一个广泛的研究,详细说明了无线网络中的流体的各种应用,并突出了他们的挑战和局限性。进一步探索了FL的疗效,其新兴的前瞻性超出了第五代(B5G)和第六代(6G)通信系统。本调查的目的是在关键的无线技术中概述了流动的技术,这些技术将作为建立对该主题的坚定了解的基础。最后,我们向未来的研究方向提供前进的道路。
translated by 谷歌翻译
边缘计算是一个将数据处理服务转移到生成数据的网络边缘的范式。尽管这样的架构提供了更快的处理和响应,但除其他好处外,它还提出了必须解决的关键安全问题和挑战。本文讨论了从硬件层到系统层的边缘网络体系结构出现的安全威胁和漏洞。我们进一步讨论了此类网络中的隐私和法规合规性挑战。最后,我们认为需要一种整体方法来分析边缘网络安全姿势,该姿势必须考虑每一层的知识。
translated by 谷歌翻译
医学事物互联网(IOMT)允许使用传感器收集生理数据,然后将其传输到远程服务器,这使医生和卫生专业人员可以连续,永久地分析这些数据,并在早期阶段检测疾病。但是,使用无线通信传输数据将其暴露于网络攻击中,并且该数据的敏感和私人性质可能代表了攻击者的主要兴趣。在存储和计算能力有限的设备上使用传统的安全方法无效。另一方面,使用机器学习进行入侵检测可以对IOMT系统的要求提供适应性的安全响应。在这种情况下,对基于机器学习(ML)的入侵检测系统如何解决IOMT系统中的安全性和隐私问题的全面调查。为此,提供了IOMT的通用三层体系结构以及IOMT系统的安全要求。然后,出现了可能影响IOMT安全性的各种威胁,并确定基于ML的每个解决方案中使用的优势,缺点,方法和数据集。最后,讨论了在IOMT的每一层中应用ML的一些挑战和局限性,这些挑战和局限性可以用作未来的研究方向。
translated by 谷歌翻译
In recent years, mobile devices are equipped with increasingly advanced sensing and computing capabilities. Coupled with advancements in Deep Learning (DL), this opens up countless possibilities for meaningful applications, e.g., for medical purposes and in vehicular networks. Traditional cloudbased Machine Learning (ML) approaches require the data to be centralized in a cloud server or data center. However, this results in critical issues related to unacceptable latency and communication inefficiency. To this end, Mobile Edge Computing (MEC) has been proposed to bring intelligence closer to the edge, where data is produced. However, conventional enabling technologies for ML at mobile edge networks still require personal data to be shared with external parties, e.g., edge servers. Recently, in light of increasingly stringent data privacy legislations and growing privacy concerns, the concept of Federated Learning (FL) has been introduced. In FL, end devices use their local data to train an ML model required by the server. The end devices then send the model updates rather than raw data to the server for aggregation. FL can serve as an enabling technology in mobile edge networks since it enables the collaborative training of an ML model and also enables DL for mobile edge network optimization. However, in a large-scale and complex mobile edge network, heterogeneous devices with varying constraints are involved. This raises challenges of communication costs, resource allocation, and privacy and security in the implementation of FL at scale. In this survey, we begin with an introduction to the background and fundamentals of FL. Then, we highlight the aforementioned challenges of FL implementation and review existing solutions. Furthermore, we present the applications of FL for mobile edge network optimization. Finally, we discuss the important challenges and future research directions in FL.
translated by 谷歌翻译
5G建筑和深度学习的融合在无线通信和人工智能领域都获得了许多研究兴趣。这是因为深度学习技术已被确定为构成5G体系结构的5G技术的潜在驱动力。因此,关于5G架构和深度学习的融合进行了广泛的调查。但是,大多数现有的调查论文主要集中于深度学习如何与特定的5G技术融合,因此,不涵盖5G架构的全部范围。尽管最近有一份调查文件似乎很强大,但对该论文的评论表明,它的结构不佳,无法专门涵盖深度学习和5G技术的收敛性。因此,本文概述了关键5G技术和深度学习的融合。讨论了这种融合面临的挑战。此外,还讨论了对未来6G体系结构的简要概述,以及如何与深度学习进行融合。
translated by 谷歌翻译
通信技术和互联网的最新进展与人工智能(AI)启用了智能医疗保健。传统上,由于现代医疗保健网络的高性性和日益增长的数据隐私问题,AI技术需要集中式数据收集和处理,这可能在现实的医疗环境中可能是不可行的。作为一个新兴的分布式协作AI范例,通过协调多个客户(例如,医院)来执行AI培训而不共享原始数据,对智能医疗保健特别有吸引力。因此,我们对智能医疗保健的使用提供了全面的调查。首先,我们在智能医疗保健中展示了近期进程,动机和使用FL的要求。然后讨论了近期智能医疗保健的FL设计,从资源感知FL,安全和隐私感知到激励FL和个性化FL。随后,我们对关键医疗领域的FL新兴应用提供了最先进的综述,包括健康数据管理,远程健康监测,医学成像和Covid-19检测。分析了几个最近基于智能医疗保健项目,并突出了从调查中学到的关键经验教训。最后,我们讨论了智能医疗保健未来研究的有趣研究挑战和可能的指示。
translated by 谷歌翻译
受到深入学习的巨大成功通过云计算和边缘芯片的快速发展的影响,人工智能研究(AI)的研究已经转移到计算范例,即云计算和边缘计算。近年来,我们目睹了在云服务器上开发更高级的AI模型,以超越传统的深度学习模型,以造成模型创新(例如,变压器,净化家庭),训练数据爆炸和飙升的计算能力。但是,边缘计算,尤其是边缘和云协同计算,仍然在其初期阶段,因为由于资源受限的IOT场景,因此由于部署了非常有限的算法而导致其成功。在本调查中,我们对云和边缘AI进行系统审查。具体而言,我们是第一个设置云和边缘建模的协作学习机制,通过彻底的审查使能够实现这种机制的架构。我们还讨论了一些正在进行的先进EDGE AI主题的潜在和实践经验,包括预先训练模型,图形神经网络和加强学习。最后,我们讨论了这一领域的有希望的方向和挑战。
translated by 谷歌翻译
In recent years, the exponential proliferation of smart devices with their intelligent applications poses severe challenges on conventional cellular networks. Such challenges can be potentially overcome by integrating communication, computing, caching, and control (i4C) technologies. In this survey, we first give a snapshot of different aspects of the i4C, comprising background, motivation, leading technological enablers, potential applications, and use cases. Next, we describe different models of communication, computing, caching, and control (4C) to lay the foundation of the integration approach. We review current state-of-the-art research efforts related to the i4C, focusing on recent trends of both conventional and artificial intelligence (AI)-based integration approaches. We also highlight the need for intelligence in resources integration. Then, we discuss integration of sensing and communication (ISAC) and classify the integration approaches into various classes. Finally, we propose open challenges and present future research directions for beyond 5G networks, such as 6G.
translated by 谷歌翻译
在单个组织中设计和评估时,机器学习(ML)在检测网络攻击中的用途是有效的。然而,通过利用源自若干来源的异构网络数据样本来设计基于ML的检测系统非常具有挑战性。这主要是由于隐私问题和缺乏数据集的普遍格式。在本文中,我们提出了协同联合学习计划来解决这些问题。拟议的框架允许多个组织在设计,培训和评估中加入强大的ML的网络入侵检测系统的武力。威胁情报方案利用其应用的两个关键方面;以通用格式提供网络数据流量的可用性,以允许在数据源上提取有意义的模式。其次,采用联合学习机制来避免在组织之间共享敏感用户信息的必要性。因此,每个组织都与其他组织网络威胁智能受益,同时在内部保持其数据的隐私。该模型在本地培训,只有更新的权重与剩余的参与者共享联合平均过程。通过使用称为NF-UNSW-NB15-V2和NF-BOT-IOT-V2的NETFOL格式的两个密钥数据集,在本文中设计和评估了该框架。在评估过程中考虑了另外两种常见情景;一种集中式培训方法,其中与其他组织共享本地数据样本和本地化培训方法,没有共享威胁情报。结果证明了通过设计通用ML模型的建议框架的效率和有效性,这些框架模型有效地分类源自多个组织的良性和侵入性流量,而无需当地数据交换。
translated by 谷歌翻译
In the era of Internet of Things (IoT), network-wide anomaly detection is a crucial part of monitoring IoT networks due to the inherent security vulnerabilities of most IoT devices. Principal Components Analysis (PCA) has been proposed to separate network traffics into two disjoint subspaces corresponding to normal and malicious behaviors for anomaly detection. However, the privacy concerns and limitations of devices' computing resources compromise the practical effectiveness of PCA. We propose a federated PCA-based Grassmannian optimization framework that coordinates IoT devices to aggregate a joint profile of normal network behaviors for anomaly detection. First, we introduce a privacy-preserving federated PCA framework to simultaneously capture the profile of various IoT devices' traffic. Then, we investigate the alternating direction method of multipliers gradient-based learning on the Grassmann manifold to guarantee fast training and the absence of detecting latency using limited computational resources. Empirical results on the NSL-KDD dataset demonstrate that our method outperforms baseline approaches. Finally, we show that the Grassmann manifold algorithm is highly adapted for IoT anomaly detection, which permits drastically reducing the analysis time of the system. To the best of our knowledge, this is the first federated PCA algorithm for anomaly detection meeting the requirements of IoT networks.
translated by 谷歌翻译
在过去的十年中,数据驱动的算法在许多研究领域(如计算机视觉,自然语言处理等)中的基于传统优化的算法表现优于。然而,广泛的数据用法为深度学习算法带来了新的挑战甚至威胁,即保留隐私。分布式培训策略最近成为一种有希望的方法,以确保在培训深层模型时保证数据隐私。本文扩展了传统的无服务器平台,无服务器边缘学习架构,并从网络透视提供有效的分布式训练框架。此框架动态协调异构物理单位之间的可用资源,以有效地满足深度学习目标。该设计共同考虑学习任务请求和基础设施异质性,包括最后一英里的传输,移动设备,边缘和云计算中心的计算能力,以及设备电池状态。此外,为了显着减少分布式训练开销,通过与一般简单的数据分类器集成来提出小规模的数据培训。这种低负载增强能够与各种分布的深层模型无缝工作,以改善培训阶段的通信和计算效率。最后,开放的挑战和未来的研究方向鼓励研究界开发有效的分布式深度学习技术。
translated by 谷歌翻译
联邦学习(FL)最近成为网络攻击检测系统的有效方法,尤其是在互联网上(物联网)网络。通过在IOT网关中分配学习过程,FL可以提高学习效率,降低通信开销并增强网络内人检测系统的隐私。在这种系统中实施FL的挑战包括不同物联网中的数据特征的标记数据和不可用的不可用。在本文中,我们提出了一种新的协作学习框架,利用转移学习(TL)来克服这些挑战。特别是,我们开发一种新颖的协作学习方法,使目标网络能够有效地和快速学习来自拥有丰富标记数据的源网络的知识。重要的是,最先进的研究要求网络的参与数据集具有相同的特征,从而限制了入侵检测系统的效率,灵活性以及可扩展性。但是,我们所提出的框架可以通过在各种深度学习模型中交换学习知识来解决这些问题,即使他们的数据集具有不同的功能。关于最近的真实网络安全数据集的广泛实验表明,与基于最先进的深度学习方法相比,拟议的框架可以提高超过40%。
translated by 谷歌翻译
互联网连接系统的指数增长产生了许多挑战,例如频谱短缺问题,需要有效的频谱共享(SS)解决方案。复杂和动态的SS系统可以接触不同的潜在安全性和隐私问题,需要保护机制是自适应,可靠和可扩展的。基于机器学习(ML)的方法经常提议解决这些问题。在本文中,我们对最近的基于ML的SS方法,最关键的安全问题和相应的防御机制提供了全面的调查。特别是,我们详细说明了用于提高SS通信系统的性能的最先进的方法,包括基于ML基于ML的基于的数据库辅助SS网络,ML基于基于的数据库辅助SS网络,包括基于ML的数据库辅助的SS网络,基于ML的LTE-U网络,基于ML的环境反向散射网络和其他基于ML的SS解决方案。我们还从物理层和基于ML算法的相应防御策略的安全问题,包括主要用户仿真(PUE)攻击,频谱感测数据伪造(SSDF)攻击,干扰攻击,窃听攻击和隐私问题。最后,还给出了对ML基于ML的开放挑战的广泛讨论。这种全面的审查旨在为探索新出现的ML的潜力提供越来越复杂的SS及其安全问题,提供基础和促进未来的研究。
translated by 谷歌翻译