与基于现代聚类算法的完全监督的REID方法相比,未经监督的人重新识别(U-Reid)最近达到了竞争性能。然而,这种基于聚类的方案对大规模数据集来说变得对计算方式。如何探讨如何有效利用具有有限计算资源的无限未标记的数据,以便更好地进行更好的U-Reid。在本文中,我们首次尝试大规模U-Reid并提出一个“大型任务的小数据”范式被称为Meta聚类学习(MCL)。 MCL仅通过群集伪标记整个未标记数据的子集,以节省第一期训练的计算。之后,被学习的集群中心称为我们的MCL中的元原型,被视为代理注释器,以便轻松注释其它未标记数据以进一步抛光模型。为了缓解抛光阶段的潜在嘈杂的标签问题,我们强制执行两个精心设计的损失限制,以保证境内统一的一致性和相互识别的强烈相关性。对于多个广泛使用的U-REID基准测试,我们的方法显着节省了计算成本,同时与先前作品相比,实现了可比或更好的性能。
translated by 谷歌翻译
最先进的无监督的RE-ID方法使用基于内存的非参数软制AX丢失训练神经网络。存储在存储器中的实例特征向量通过群集和更新在实例级别中分配伪标签。然而,不同的簇大小导致每个群集的更新进度中的不一致。为了解决这个问题,我们呈现了存储特征向量的集群对比度,并计算群集级别的对比度损耗。我们的方法采用唯一的群集表示来描述每个群集,从而产生群集级存储字典。以这种方式,可以有效地保持聚类的一致性,在整个阶段,可以显着降低GPU存储器消耗。因此,我们的方法可以解决集群不一致的问题,并且适用于较大的数据集。此外,我们采用不同的聚类算法来展示我们框架的鲁棒性和泛化。与标准无监督的重新ID管道的集群对比的应用达到了9.9%,8.3%,12.1%的显着改善,而最新的无人纯粹无监督的重新ID方法和5.5%,4.8%,4.4%地图相比与市场,公爵和MSMT17数据集上的最先进的无监督域适应重新ID方法相比。代码可在https://github.com/alibaba/cluster-contrast获得。
translated by 谷歌翻译
无监督的域自适应人重新识别(重新ID)任务是一个挑战,因为与常规域自适应任务不同,人物重新ID中的源域数据和目标域数据之间没有重叠,这导致一个重要的领域差距。最先进的无监督的RE-ID方法使用基于内存的对比损耗训练神经网络。然而,通过将每个未标记的实例视为类来执行对比学习,作为类将导致阶级冲突的问题,并且由于在存储库中更新时不同类别的实例数量的差异,更新强度是不一致的。为了解决此类问题,我们提出了对人的重新ID的原型字典学习,其能够通过一个训练阶段利用源域数据和目标域数据,同时避免类碰撞问题和群集更新强度不一致的问题原型字典学习。为了减少模型上域间隙的干扰,我们提出了一个本地增强模块,以改善模型的域适应而不增加模型参数的数量。我们在两个大型数据集上的实验证明了原型字典学习的有效性。 71.5 \%地图是在市场到Duke任务中实现的,这是与最先进的无监督域自适应RE-ID方法相比的2.3 \%的改进。它在Duke-to-Market任务中实现了83.9 \%地图,而与最先进的无监督的自适应重新ID方法相比,该任务在4.4 \%中提高了4.4%。
translated by 谷歌翻译
无监督的人重新识别(RE-ID)由于其可扩展性和对现实世界应用的可能性而吸引了增加的研究兴趣。最先进的无监督的重新ID方法通常遵循基于聚类的策略,该策略通过聚类来生成伪标签,并维护存储器以存储实例功能并代表群集的质心进行对比​​学习。这种方法遇到了两个问题。首先,无监督学习产生的质心可能不是一个完美的原型。强迫图像更接近质心,强调了聚类的结果,这可能会在迭代过程中积累聚类错误。其次,以前的方法利用在不同的训练迭代中获得的功能代表一种质心,这与当前的训练样本不一致,因为这些特征不是直接可比的。为此,我们通过随机学习策略提出了一种无监督的重新ID方法。具体来说,我们采用了随机更新的内存,其中使用集群的随机实例来更新群集级内存以进行对比度学习。这样,学会了随机选择的图像对之间的关​​系,以避免由不可靠的伪标签引起的训练偏见。随机内存也始终是最新的,以保持一致性。此外,为了减轻摄像机方差的问题,在聚类过程中提出了一个统一的距离矩阵,其中减少了不同摄像头域的距离偏置,并强调了身份的差异。
translated by 谷歌翻译
现有人重新识别(Reid)方法通常直接加载预先训练的ImageNet权重以进行初始化。然而,作为一个细粒度的分类任务,Reid更具挑战性,并且存在于想象成分类之间的大域差距。在本文中,通过自我监督的代表性的巨大成功的巨大成功,在本文中,我们为基于对比学习(CL)管道的对比训练,为REID设计了一个无人监督的训练框架,被称为上限。在预培训期间,我们试图解决学习细粒度的重点问题的两个关键问题:(1)CL流水线中的增强可能扭曲人物图像中的鉴别条款。 (2)未完全探索人物图像的细粒度局部特征。因此,我们在Up-Reid中引入了一个身份内 - 身份(i $ ^ 2 $ - )正则化,该正常化是从全局图像方面和本地补丁方面的两个约束:在增强和原始人物图像之间强制强制实施全局一致性为了增加增强的稳健性,而使用每个图像的本地斑块之间的内在对比度约束来完全探索局部鉴别的线索。在多个流行的RE-ID数据集上进行了广泛的实验,包括PersonX,Market1501,CuHK03和MSMT17,表明我们的上部Reid预训练模型可以显着使下游REID微调和实现最先进的性能。代码和模型将被释放到https://github.com/frost-yang-99/up -reid。
translated by 谷歌翻译
未经监督的人重新识别(重新ID)由于其解决监督重新ID模型的可扩展性问题而吸引了越来越多的关注。大多数现有的无监督方法采用迭代聚类机制,网络基于由无监督群集生成的伪标签进行培训。但是,聚类错误是不可避免的。为了产生高质量的伪标签并减轻聚类错误的影响,我们提出了一种新的群集关系建模框架,用于无监督的人重新ID。具体地,在聚类之前,基于曲线图相关学习(GCL)模块探索未标记图像之间的关系,然后将其用于聚类以产生高质量的伪标签。本,GCL适自适应地挖掘样本之间的关系迷你批次以减少培训时异常聚类的影响。为了更有效地训练网络,我们进一步提出了一种选择性对比学习(SCL)方法,具有选择性存储器银行更新策略。广泛的实验表明,我们的方法比在Market1501,Dukemtmc-Reid和MSMT17数据集上的大多数最先进的无人监督方法显示出更好的结果。我们将发布模型再现的代码。
translated by 谷歌翻译
无监督的人重新识别是计算机视觉中的一项具有挑战性且有前途的任务。如今,无监督的人重新识别方法通过使用伪标签培训取得了巨大进步。但是,如何以无监督的方式进行纯化的特征和标签噪声的显式研究。为了净化功能,我们考虑了来自不同本地视图的两种其他功能,以丰富功能表示。所提出的多视图功能仔细地集成到我们的群体对比度学习中,以利用全球功能容易忽略和偏见的更具歧视性线索。为了净化标签噪声,我们建议在离线方案中利用教师模型的知识。具体来说,我们首先从嘈杂的伪标签培训教师模型,然后使用教师模型指导我们的学生模型的学习。在我们的环境中,学生模型可以在教师模型的监督下快速融合,因此,随着教师模型的影响很大,嘈杂标签的干扰。在仔细处理功能学习中的噪音和偏见之后,我们的纯化模块被证明对无监督的人的重新识别非常有效。对三个受欢迎人重新识别数据集进行的广泛实验证明了我们方法的优势。尤其是,我们的方法在具有挑战性的Market-1501基准中,在完全无监督的环境下,在具有挑战性的Market-1501基准中实现了最先进的精度85.8 \%@map和94.5 \% @rank-1。代码将发布。
translated by 谷歌翻译
Systems for person re-identification (ReID) can achieve a high accuracy when trained on large fully-labeled image datasets. However, the domain shift typically associated with diverse operational capture conditions (e.g., camera viewpoints and lighting) may translate to a significant decline in performance. This paper focuses on unsupervised domain adaptation (UDA) for video-based ReID - a relevant scenario that is less explored in the literature. In this scenario, the ReID model must adapt to a complex target domain defined by a network of diverse video cameras based on tracklet information. State-of-art methods cluster unlabeled target data, yet domain shifts across target cameras (sub-domains) can lead to poor initialization of clustering methods that propagates noise across epochs, thus preventing the ReID model to accurately associate samples of same identity. In this paper, an UDA method is introduced for video person ReID that leverages knowledge on video tracklets, and on the distribution of frames captured over target cameras to improve the performance of CNN backbones trained using pseudo-labels. Our method relies on an adversarial approach, where a camera-discriminator network is introduced to extract discriminant camera-independent representations, facilitating the subsequent clustering. In addition, a weighted contrastive loss is proposed to leverage the confidence of clusters, and mitigate the risk of incorrect identity associations. Experimental results obtained on three challenging video-based person ReID datasets - PRID2011, iLIDS-VID, and MARS - indicate that our proposed method can outperform related state-of-the-art methods. Our code is available at: \url{https://github.com/dmekhazni/CAWCL-ReID}
translated by 谷歌翻译
最近,无监督的人重新识别(RE-ID)引起了人们的关注,因为其开放世界情景设置有限,可用的带注释的数据有限。现有的监督方法通常无法很好地概括在看不见的域上,而无监督的方法(大多数缺乏多范围的信息),并且容易患有确认偏见。在本文中,我们旨在从两个方面从看不见的目标域上找到更好的特征表示形式,1)在标记的源域上进行无监督的域适应性和2)2)在未标记的目标域上挖掘潜在的相似性。此外,提出了一种协作伪标记策略,以减轻确认偏见的影响。首先,使用生成对抗网络将图像从源域转移到目标域。此外,引入了人身份和身份映射损失,以提高生成图像的质量。其次,我们提出了一个新颖的协作多元特征聚类框架(CMFC),以学习目标域的内部数据结构,包括全局特征和部分特征分支。全球特征分支(GB)在人体图像的全球特征上采用了无监督的聚类,而部分特征分支(PB)矿山在不同人体区域内的相似性。最后,在两个基准数据集上进行的广泛实验表明,在无监督的人重新设置下,我们的方法的竞争性能。
translated by 谷歌翻译
最近,通过计算各个特征和集群记忆之间的对比损失,群集对比度学习已被证明对人员Reid有效。但是,使用各个功能以势头更新群集内存的现有方法对嘈杂的样本不稳健,例如具有错误注释标签或伪标签的样本。与基于个人的更新机制不同,基于质心的更新机制应用每个群集的平均特征更新群集内存对少数噪声样本是强大的。因此,我们制定了一个名为双集群对比学习(DCC)的统一集群对比框架中的基于个人的更新和基于质心的更新机制,它维护了两种类型的存储体:个人和质心集群存储库。值得注意的是,基于各个功能更新各个集群内存。质心群集内存应用每个Cluter的平均特征以更新相应的群集内存。除了每个存储器的Vallina对比损耗之外,应用了一致性约束,以保证两个存储器输出的一致性。请注意,通过使用聚类方法生成的地面真理标签或伪标签,可以轻松地应用于无监督或监督人员REID。在监督人员REID和无人监督者REID下的两项基准的大量实验证明了拟议的DCC的优越。代码可用:https://github.com/htyao89/dual-cluster-contrastive/
translated by 谷歌翻译
Unsupervised person re-identification (ReID) aims at learning discriminative identity features for person retrieval without any annotations. Recent advances accomplish this task by leveraging clustering-based pseudo labels, but these pseudo labels are inevitably noisy which deteriorate model performance. In this paper, we propose a Neighbour Consistency guided Pseudo Label Refinement (NCPLR) framework, which can be regarded as a transductive form of label propagation under the assumption that the prediction of each example should be similar to its nearest neighbours'. Specifically, the refined label for each training instance can be obtained by the original clustering result and a weighted ensemble of its neighbours' predictions, with weights determined according to their similarities in the feature space. In addition, we consider the clustering-based unsupervised person ReID as a label-noise learning problem. Then, we proposed an explicit neighbour consistency regularization to reduce model susceptibility to over-fitting while improving the training stability. The NCPLR method is simple yet effective, and can be seamlessly integrated into existing clustering-based unsupervised algorithms. Extensive experimental results on five ReID datasets demonstrate the effectiveness of the proposed method, and showing superior performance to state-of-the-art methods by a large margin.
translated by 谷歌翻译
Person re-identification (Re-ID) aims at retrieving a person of interest across multiple non-overlapping cameras. With the advancement of deep neural networks and increasing demand of intelligent video surveillance, it has gained significantly increased interest in the computer vision community. By dissecting the involved components in developing a person Re-ID system, we categorize it into the closed-world and open-world settings. The widely studied closed-world setting is usually applied under various research-oriented assumptions, and has achieved inspiring success using deep learning techniques on a number of datasets. We first conduct a comprehensive overview with in-depth analysis for closed-world person Re-ID from three different perspectives, including deep feature representation learning, deep metric learning and ranking optimization. With the performance saturation under closed-world setting, the research focus for person Re-ID has recently shifted to the open-world setting, facing more challenging issues. This setting is closer to practical applications under specific scenarios. We summarize the open-world Re-ID in terms of five different aspects. By analyzing the advantages of existing methods, we design a powerful AGW baseline, achieving state-of-the-art or at least comparable performance on twelve datasets for FOUR different Re-ID tasks. Meanwhile, we introduce a new evaluation metric (mINP) for person Re-ID, indicating the cost for finding all the correct matches, which provides an additional criteria to evaluate the Re-ID system for real applications. Finally, some important yet under-investigated open issues are discussed.
translated by 谷歌翻译
实用的现实世界数据集具有丰富的类别,为无监督的领域适应带来了新的挑战,例如小型阶层歧视性,仅依靠域不变性的现有方法不能很好地处理。在这项工作中,我们提出了MEMSAC,该MEMSAC利用了跨源和目标域的样本级别相似性​​,以实现判别性转移,以​​及扩展到大量类别的体系结构。为此,我们首先引入一种内存增强方法,以在标记的源和未标记的目标域实例之间有效提取成对的相似性关系,该实例适用于处理任意数量的类。接下来,我们建议和理论上证明对比损失的新型变体,以促进阶层内跨域样本之间的局部一致性,同时在类别之间执行分离,从而保留从源到目标的歧视性转移。我们验证了MEMSAC的优势,比以前的最先进的最先进的转移任务有了显着改进。我们还提供了深入的分析和对MEMSAC有效性的见解。
translated by 谷歌翻译
虽然监督语义分割存在重大进展,但由于领域偏差,将分段模型部署到解除域来仍然具有挑战性。域适应可以通过将知识从标记的源域传输到未标记的目标域来帮助。以前的方法通常尝试执行对全局特征的适应,然而,通常忽略要计入特征空间中的每个像素的本地语义附属机构,导致较少的可辨性。为解决这个问题,我们提出了一种用于细粒度阶级对齐的新型语义原型对比学习框架。具体地,语义原型提供了用于每个像素鉴别的表示学习的监控信号,并且需要在特征空间中的源极和目标域的每个像素来反映相应的语义原型的内容。通过这种方式,我们的框架能够明确地制作较近的类别的像素表示,并且进一步越来越多地分开,以改善分割模型的鲁棒性以及减轻域移位问题。与最先进的方法相比,我们的方法易于实施并达到优异的结果,如众多实验所展示的那样。代码在[此HTTPS URL](https://github.com/binhuixie/spcl)上公开可用。
translated by 谷歌翻译
In this paper, we are interested in learning a generalizable person re-identification (re-ID) representation from unlabeled videos. Compared with 1) the popular unsupervised re-ID setting where the training and test sets are typically under the same domain, and 2) the popular domain generalization (DG) re-ID setting where the training samples are labeled, our novel scenario combines their key challenges: the training samples are unlabeled, and collected form various domains which do no align with the test domain. In other words, we aim to learn a representation in an unsupervised manner and directly use the learned representation for re-ID in novel domains. To fulfill this goal, we make two main contributions: First, we propose Cycle Association (CycAs), a scalable self-supervised learning method for re-ID with low training complexity; and second, we construct a large-scale unlabeled re-ID dataset named LMP-video, tailored for the proposed method. Specifically, CycAs learns re-ID features by enforcing cycle consistency of instance association between temporally successive video frame pairs, and the training cost is merely linear to the data size, making large-scale training possible. On the other hand, the LMP-video dataset is extremely large, containing 50 million unlabeled person images cropped from over 10K Youtube videos, therefore is sufficient to serve as fertile soil for self-supervised learning. Trained on LMP-video, we show that CycAs learns good generalization towards novel domains. The achieved results sometimes even outperform supervised domain generalizable models. Remarkably, CycAs achieves 82.2% Rank-1 on Market-1501 and 49.0% Rank-1 on MSMT17 with zero human annotation, surpassing state-of-the-art supervised DG re-ID methods. Moreover, we also demonstrate the superiority of CycAs under the canonical unsupervised re-ID and the pretrain-and-finetune scenarios.
translated by 谷歌翻译
Partial label learning (PLL) is an important problem that allows each training example to be labeled with a coarse candidate set, which well suits many real-world data annotation scenarios with label ambiguity. Despite the promise, the performance of PLL often lags behind the supervised counterpart. In this work, we bridge the gap by addressing two key research challenges in PLL -- representation learning and label disambiguation -- in one coherent framework. Specifically, our proposed framework PiCO consists of a contrastive learning module along with a novel class prototype-based label disambiguation algorithm. PiCO produces closely aligned representations for examples from the same classes and facilitates label disambiguation. Theoretically, we show that these two components are mutually beneficial, and can be rigorously justified from an expectation-maximization (EM) algorithm perspective. Moreover, we study a challenging yet practical noisy partial label learning setup, where the ground-truth may not be included in the candidate set. To remedy this problem, we present an extension PiCO+ that performs distance-based clean sample selection and learns robust classifiers by a semi-supervised contrastive learning algorithm. Extensive experiments demonstrate that our proposed methods significantly outperform the current state-of-the-art approaches in standard and noisy PLL tasks and even achieve comparable results to fully supervised learning.
translated by 谷歌翻译
监督人员重新识别(RE-ID)方法需要大量的成对手动标记数据,这些数据不适用于重新ID部署的大多数真实情景。另一方面,无监督的RE-ID方法依赖于未标记的数据来培训模型,但与监督的重新ID方法相比,执行差劲。在这项工作中,我们的目标是将无监督的重新识别学习与少数人的注释相结合,以实现竞争性能。为此目标,我们提出了一个无人监督的聚类主动学习(UCAL)重新ID深度学习方法。它能够逐步地发现代表性的质心对并要求人类注释它们。这些标记的代表成对数据可以通过其他大量未标记的数据来改善无监督的表示学习模型。更重要的是,由于选择了代表性质心对注释,UCAL可以使用非常低成本的人力努力工作。广泛的实验表明,在三个重新ID基准数据集上展示了拟议的模型的优越性。
translated by 谷歌翻译
域概括(DG)最近引起了人的重新识别(REID)的巨大关注。它旨在使在多个源域上培训的模型概括到未经看不见的目标域。虽然实现了有前进的进步,但现有方法通常需要要标记的源域,这可能是实际REID任务的重大负担。在本文中,我们通过假设任何源域都有任何标签可以调查Reid的无监督域泛化。为了解决这个具有挑战性的设置,我们提出了一种简单高效的域特定的自适应框架,并通过设计在批处理和实例归一化技术上的自适应归一化模块实现。在此过程中,我们成功地产生了可靠的伪标签来实现培训,并根据需要增强模型的域泛化能力。此外,我们表明,我们的框架甚至可以应用于在监督域泛化和无监督域适应的环境下改进人员Reid,展示了关于相关方法的竞争性能。对基准数据集进行了广泛的实验研究以验证所提出的框架。我们的工作的重要性在于它表明了对人Reid的无监督域概括的潜力,并为这一主题进一步研究了一个强大的基线。
translated by 谷歌翻译
无监督的域适应性(UDA)旨在使在标记的源域上训练的模型适应未标记的目标域。在本文中,我们提出了典型的对比度适应(PROCA),这是一种无监督域自适应语义分割的简单有效的对比度学习方法。以前的域适应方法仅考虑跨各个域的阶级内表示分布的对齐,而阶层间结构关系的探索不足,从而导致目标域上的对齐表示可能不像在源上歧视的那样容易歧视。域了。取而代之的是,ProCA将类间信息纳入班级原型,并采用以班级为中心的分布对齐进行适应。通过将同一类原型与阳性和其他类原型视为实现以集体为中心的分配对齐方式的负面原型,Proca在经典领域适应任务上实现了最先进的性能,{\ em i.e. text {and} synthia $ \ to $ cityScapes}。代码可在\ href {https://github.com/jiangzhengkai/proca} {proca}获得代码
translated by 谷歌翻译
最近,许多方法通过基于伪标签的对比学习来解决无监督的域自适应人员重新识别(UDA RE-ID)问题。在培训期间,通过简单地平均来自具有相同伪标签的集群的所有实例特征来获得UNI-Firedroid表示。然而,由于群集结果不完美的聚类结果,群集可能包含具有不同标识(标签噪声)的图像,这使得UNI质心表示不适当。在本文中,我们介绍了一种新的多质心存储器(MCM),以在群集中自适应地捕获不同的身份信息。 MCM可以通过为查询图像选择适当的正/负质心来有效地减轻标签噪声问题。此外,我们进一步提出了两种策略来改善对比学习过程。首先,我们介绍了一个域特定的对比度学习(DSCL)机制,通过仅通过相同域进行比较样本来完全探索局部信息。其次,我们提出了二阶最近的插值(Soni)以获得丰富和信息性的负样本。我们将MCM,DSCL和Soni集成到一个名为Multi-Firedroid表示网络(MCRN)的统一框架中。广泛的实验证明了MCRN在多个UDA重新ID任务上的最先进方法和完全无监督的重新ID任务的优越性。
translated by 谷歌翻译