本文解决了颞句的接地。以前的作品通常通过学习帧级视频功能来解决此任务并将其与文本信息对齐。这些作品的一个主要限制是,由于帧级特征提取,它们未能利用具有微妙的外观差异的模糊视频帧。最近,一些方法采用更快的R-CNN来提取每帧中的详细物体特征来区分细粒的外观相似性。然而,由于对象检测模型缺乏时间建模,因此通过更快的R-CNN提取的对象级别特征遭受缺失的运动分析。为了解决这个问题,我们提出了一种新颖的运动外观推理网络(MARN),其包括动作感知和外观感知对象特征,以更好的原因对象关系来建立连续帧之间的活动。具体而言,我们首先介绍两个单独的视频编码器以将视频嵌入到相应的主导和外观 - 方面对象表示中。然后,我们开发单独的运动和外观分支,以分别学习运动引导和外观引导的对象关系。最后,来自两个分支的运动和外观信息都与用于最终接地的更多代表性的特征相关联。对两个具有挑战性的数据集(Chardes-Sta和Tacos)的广泛实验表明,我们提出的马恩在以前的最先进的方法中大大优于大幅度。
translated by 谷歌翻译
视频中的时间语言接地旨在本地化与给定查询句子相关的时间范围。以前的方法将其视为边界回归任务或跨度提取任务。本文将向视频阅读理解的临时语言配制,并提出了一个关系感知网络(RANET)来解决它。该框架旨在借助于粗细选择查询交互和选择选择关系构建,从预定义答案中选择视频时刻选择。建议选择查询互操作器以在句时刻和令牌时刻同时匹配视觉和文本信息,导致粗略和细微的跨模型交互。此外,通过利用图形卷积来引入新的多项选择关系构造函数,以捕获视频时刻选择的依赖性,以获得最佳选择选​​择。关于活动网络标题,炸玉米饼和Charades-sta的广泛实验证明了我们解决方案的有效性。代码已提供。
translated by 谷歌翻译
时间接地旨在本地化与给定的自然语言查询语义对齐的视频片刻。现有方法通常在融合表示上应用检测或回归管道,研究重点是设计复杂的预测头或融合策略。相反,从时间接地作为度量学习问题的角度来看,我们呈现了一个相互匹配的网络(MMN),以直接模拟联合嵌入空间中的语言查询和视频矩之间的相似性。这种新的公制学习框架可以完全利用两个新方面的负面样本:在相互匹配方案中构建负跨模型对和跨不同视频的挖掘负对。这些新的阴性样本可以通过跨模态相互匹配来增强两个模式的联合表示学习,以最大化其互信。实验表明,与四个视频接地基准测试的最先进的方法相比,我们的MMN实现了竞争力的表现。基于MMN,我们为第三张图片车间的HC-STVG挑战提供了一个胜利者解决方案。这表明度量学习仍然是通过捕获关节嵌入空间中的基本跨模式相关性的时间接地的有希望的方法。代码可在https://github.com/mcg-nju/mmn获得。
translated by 谷歌翻译
时间接地的任务旨在在未经监控的视频中定位视频时刻,具有给定的句子查询。本文首次调查了某些特定于时间接地任务的肤浅偏差,并提出了一种新型靶向解决方案。最令人惊讶的是,我们观察到现有的时间地面模型在视觉模态中严重依赖于某些偏差(例如,高偏好或频繁概念或某些时间间隔的高偏好)。当在跨场景测试设置中概括模型时,这导致较差的性能。为此,我们提出了一种新颖的方法,称为Debiaded Temporal语言定位器(DebiaStll),以防止模型天鹅绒记忆偏差并强制基于真正的模态关系将查询句子接地。 Debias-TLL同时列举两种型号。通过我们的设计,当判断样品时,这两个模型的预测的大大差异显示出更高的偏置样品的概率。利用信息性差异,我们设计了一种用于缓解数据偏差的数据重称之度方案。我们评估跨场景时间接地中提出的模型,其中火车/测试数据是异构的。实验表明,与最先进的竞争对手相比,所提出的方法的大幅度优势。
translated by 谷歌翻译
视频瞬间检索旨在找到给定自然语言查询描述的片刻的开始和结束时间戳(视频的一部分)。全面监督的方法需要完整的时间边界注释才能获得有希望的结果,这是昂贵的,因为注释者需要关注整个时刻。弱监督的方法仅依赖于配对的视频和查询,但性能相对较差。在本文中,我们仔细研究了注释过程,并提出了一种称为“ Glance注释”的新范式。该范式需要一个只有一个随机框架的时间戳,我们将其称为“目光”,在完全监督的对应物的时间边界内。我们认为这是有益的,因为与弱监督相比,添加了琐碎的成本,还提供了更大的潜力。在一眼注释设置下,我们提出了一种基于对比度学习的一眼注释(VIGA),称为视频力矩检索的方法。 Viga将输入视频切成片段,并在剪辑和查询之间形成对比,其中一眼指导的高斯分布重量被分配给所有夹子。我们的广泛实验表明,VIGA通过很大的边距较小的弱监督方法获得了更好的结果,甚至可以在某些情况下与完全监督的方法相媲美。
translated by 谷歌翻译
文本和视频之间交叉模态检索的任务旨在了解视觉和语言之间的对应关系。现有研究遵循基于文本和视频嵌入的测量文本视频相似度的趋势。在常见的做法中,通过将视频帧馈送到用于全球视觉特征提取的视频帧或仅通过使用图形卷积网络使用本地细粒度的框架区域来实现简单的语义关系来构造视频表示。然而,这些视频表示在学习视频表示中的视觉组件之间没有充分利用时空关系,从而无法区分具有相同视觉组件但具有不同关系的视频。为了解决这个问题,我们提出了一种视觉时空关系增强的网络(VSR-Net),这是一种新的跨模型检索框架,其考虑组件之间的空间视觉关系,以增强桥接文本 - 视频模型中的全局视频表示。具体地,使用多层时空变压器来编码视觉时空关系,以学习视觉关系特征。我们将全局视觉和细粒度的关系功能与两个嵌入空格上的文本功能对齐,用于交叉模态文本 - 视频检索。在MSR-VTT和MSVD数据集中进行了广泛的实验。结果表明了我们提出的模型的有效性。我们将发布促进未来研究的代码。
translated by 谷歌翻译
视频接地旨在通过给定语言查询,本地化未经监控的视频中的相应视频时刻。现有方法通常以间接方式解决此任务,通过将其作为提案和匹配或融合和检测问题。解决这些替代问题通常需要在培训和手工制作的近重复结果中进行复杂的标签分配。同时,现有的作品通常专注于具有单句的稀疏视频接地,作为输入可能导致由于其不清晰的描述而产生模糊的本地化。在本文中,我们通过将段落作为输入同时定位多个时刻来解决密集视频接地的新问题。从视频接地的视角是语言条件回归,我们通过重新拟合变压器 - 相似的架构(PRVG)来提出端到端的并行解码范式。我们的PRVG中的关键设计是使用语言作为查询,并基于语言调制的可视表示直接回归矩界限。由于其简单设计,我们的PRVG框架可以应用于不同的测试方案(稀疏或密集的接地),并允许无需任何后处理技术的有效推理。此外,我们设计了强大的提案级注意力损失,以指导PRVG的培训,这不变于时刻持续时间,并有助于模型收敛。我们对ActivityNet标题和炸玉米饼的两个视频接地基准进行实验,展示了我们的PRVG可以显着优于以前的方法。我们还进行深入的研究,以研究并行回归范例对视频接地的有效性。
translated by 谷歌翻译
视频时刻检索旨在搜索与给定语言查询最相关的那一刻。然而,该社区中的大多数现有方法通常需要季节边界注释,这昂贵且耗时地标记。因此,最近仅通过使用粗略视频级标签来提出弱监督的方法。尽管有效,但这些方法通常是独立处理候选人的候选人,同时忽略了不同时间尺度中候选者之间的自然时间依赖性的关键问题。要应对这个问题,我们提出了一种多尺度的2D表示学习方法,用于弱监督视频时刻检索。具体地,我们首先构造每个时间刻度的二维图以捕获候选者之间的时间依赖性。该地图中的两个维度表示这些候选人的开始和结束时间点。然后,我们使用学习卷积神经网络从每个刻度变化的地图中选择Top-K候选。通过新设计的时刻评估模块,我们获得所选候选人的对齐分数。最后,标题和语言查询之间的相似性被用作进一步培训候选者选择器的监督。两个基准数据集Charades-STA和ActivityNet标题的实验表明,我们的方法能够实现最先进的结果。
translated by 谷歌翻译
随着社交媒体的出现,每天都会上传大量的视频剪辑,并使用语言查询来检索最相关的视觉内容变得至关重要。大多数方法旨在学习纯文本和视觉内容的联合嵌入空间,而无需充分利用其模式内结构和模式间相关性。本文提出了一种新颖的变压器,将文本和视频明确地将文本和视频分解为对象,空间环境和时间上下文的语义角色,并具有注意力方案,以学习三个角色之间的内部和角色间相关性,以发现歧视性特征,以发现与不同的匹配水平。流行的YouCook2的初步结果表明,我们的方法超过了当前的最新方法,所有指标的利润很高。它还可以用两个指标覆盖两种SOTA方法。
translated by 谷歌翻译
给定文本描述,时间语言接地(TLG)旨在本地化包含未经监控视频中指定语义的段的时间边界。 TLG本质上是一个具有挑战性的任务,因为它需要全面了解句子语义和视频内容。以前的作品可以在完全监督的设置中解决此任务,需要大量的时间注释或在通常无法实现令人满意的性能的弱监管设置中。由于手动注释是昂贵的,以应对有限的注释,我们通过纳入自我监督的学习以半监督方式解决TLG,并提出自我监督的半监督时间语言接地(S ^ 4TLG)。 S ^ 4TLG由两部分组成:(1)基于来自教师模型的预测,自适应为未标记的样本进行自适应生产即时伪标签的伪标签生成模块; (2)具有模态和模态对比度损耗的自我监督特征学习模块,以在视频内容一致性和视频文本对齐的约束下学习视频特征表示。我们对ActivityNet-CD-OOD和Charades-CD-OOD数据集进行了广泛的实验。结果表明,与完全监督的最新方法相比,我们所提出的S ^ 4TLG可以实现竞争性能,同时只需要一小部分时间注释。
translated by 谷歌翻译
连接视觉和语言在生成智能中起着重要作用。因此,已经致力于图像标题的大型研究工作,即用句法和语义有意义的句子描述图像。从2015年开始,该任务通常通过由Visual Encoder组成的管道和文本生成的语言模型来解决任务。在这些年来,两种组件通过对象区域,属性,介绍多模态连接,完全关注方法和伯特早期融合策略的利用而显着发展。但是,无论令人印象深刻的结果,图像标题的研究还没有达到结论性答案。这项工作旨在提供图像标题方法的全面概述,从视觉编码和文本生成到培训策略,数据集和评估度量。在这方面,我们量化地比较了许多相关的最先进的方法来确定架构和培训策略中最有影响力的技术创新。此外,讨论了问题的许多变体及其开放挑战。这项工作的最终目标是作为理解现有文献的工具,并突出显示计算机视觉和自然语言处理的研究领域的未来方向可以找到最佳的协同作用。
translated by 谷歌翻译
我们提出了Locommer,一种基于变压器的视频接地模型,其在恒定的存储空间中运行,无论视频长度如何,即帧数。 Locommer专为任务而设计,在那里需要处理整个长视频,并在其核心贴上两个主要贡献。首先,我们的模型包含一种新的采样技术,将输入要素序列分成固定数量的部分,并使用随机方法选择每个部分的单个特征,这允许我们获得代表视频内容的特征样本集在手中的任务,同时保持内存占用空间。其次,我们提出了一种模块化设计,将功能分开,使我们能够通过监督自我关注头来学习归纳偏差,同时还有效利用预先接受训练的文本和视频编码器。我们在相关的基准数据集中测试我们的建议,以进行视频接地,表明该表现形式不仅可以实现优异的结果,包括在YouCookii上的最先进的性能,也可以比竞争对手更有效,并且它一直有效在平均工作的情况下,最新工作的表现,均值较大,最终导致Chardes-STA的新的最先进的性能。
translated by 谷歌翻译
人类通过不同的渠道表达感受或情绪。以语言为例,它在不同的视觉声学上下文下需要不同的情绪。为了精确了解人类意图,并减少歧义和讽刺引起的误解,我们应该考虑多式联路信号,包括文本,视觉和声学信号。至关重要的挑战是融合不同的特征模式以进行情绪分析。为了有效地融合不同的方式携带的信息,更好地预测情绪,我们设计了一种基于新的多主题的融合网络,这是由任何两个对方式之间的相互作用不同的观察来启发,它们是不同的,并且它们不同样有助于最终的情绪预测。通过分配具有合理关注和利用残余结构的声学 - 视觉,声学 - 文本和视觉文本特征,我们参加了重要的特征。我们对四个公共多模式数据集进行了广泛的实验,包括中文和三种英文中的一个。结果表明,我们的方法优于现有的方法,并可以解释双模相互作用在多种模式中的贡献。
translated by 谷歌翻译
视觉接地是定位自然语言表达式指示的目标的任务。现有方法将通用对象检测框架扩展到此问题。它们将视觉接地基于预先生成的提案或锚点的特征,并将这些功能与文本嵌入融合,以找到文本提到的目标。但是,对这些预定义位置的视觉特征进行建模可能无法完全利用文本查询中的视觉上下文和属性信息,从而限制其性能。在本文中,我们提出了一个基于变压器的框架,以通过建立文本条件的判别特征和执行多阶段的跨模式推理来进行准确的视觉接地。具体而言,我们开发了一个视觉语言验证模块,以将视觉特征集中在与文本描述相关的区域上,同时抑制了无关区域。还设计了一种语言指导的特征编码器来汇总目标对象的视觉上下文,以提高对象的独特性。为了从编码的视觉特征中检索目标,我们进一步提出了一个多阶段的跨模式解码器,以迭代地推测图像和文本之间的相关性,以进行准确的目标定位。在五个广泛使用的数据集上进行的广泛实验验证了我们提出的组件的功效,并证明了最先进的性能。我们的代码在https://github.com/yangli18/vltvg上公开。
translated by 谷歌翻译
我们介绍了空间本地化叙述中的视频中的任务。我们的方法的关键是能够学会在与随附的叙述的视频中的大型视频中对自我监督进行空间地定位与自我监督的互动。为实现这一目标,我们提出了一种多层跨模型关注网络,可以在培训期间有效优化对比损失。我们介绍了一种分割的策略,可以通过视觉和自然语言方式计算和中间模态注意力之间的交替,这允许通过直接对比两种方式的表示来实现有效的培训。我们展示了我们对HOWTO100M教学数据集的自我训练的方法的有效性,并在YouCook2 DataSet中的本地化描述交互的新收集数据集上进行评估。我们展示了我们的方法优于替代基准,包括浅薄的共同关注和完全跨越的关注。我们还将我们的方法应用于在Flickr30k上的弱监管下的图像中的接地短语,并显示堆叠多个注意层是有效的,并且当与对区域丢失相结合时,在召回召回和指向时达到最先进的艺术状态手准确性。
translated by 谷歌翻译
视频突出显示检测是一个至关重要但充满挑战的问题,旨在识别未修剪视频中有趣的时刻。该任务的关键在于有效的视频表示形式共同追求两个目标,即\ textit {i.e。},跨模式表示学习和精细元素特征歧视。在本文中,这两个挑战不仅通过丰富表示建模的模式内部和跨模式关系来应对,而且还以歧视性的方式塑造了这些特征。我们提出的方法主要利用模式内编码和交叉模式共发生编码来完全表示建模。具体而言,编码的模式内模式可以增强模态特征,并通过音频和视觉信号中的模式关系学习来抑制无关的模态。同时,跨模式的共同发生编码着重于同时模式间关系,并选择性地捕获了多模式之间的有效信息。从本地上下文中抽象的全局信息进一步增强了多模式表示。此外,我们使用硬对对比度学习(HPCL)方案扩大了特征嵌入的判别能力。进一步采用了硬对采样策略来开采硬样品,以改善HPCL中的特征歧视。与其他最新方法相比,在两个基准上进行的广泛实验证明了我们提出的方法的有效性和优势。
translated by 谷歌翻译
时间行动提案生成(TAPG)是一个具有挑战性的任务,旨在在具有时间边界的未经监控视频中找到动作实例。为了评估提案的信任,现有的作品通常预测建议与地面真理之间的时间交叉联盟(TIOO)监督的提案的行动得分。在本文中,我们通过利用背景预测得分来限制提案的信心,创新地提出了一般的辅助背景约束理念,以进一步抑制低质量的建议。以这种方式,可以轻松地将背景约束概念用于现有的TAPG方法(例如,BMN,GTAD)。从这个角度来看,我们提出了背景约束网络(BCNet),以进一步利用行动和背景的丰富信息。具体地,我们介绍了一种动作 - 背景交互模块,用于可靠的置信度评估,它通过帧和剪辑级别的注意机制模拟了动作和背景之间的不一致。在两个流行的基准测试中进行了广泛的实验,即ActivityNet-1.3和Thumos14。结果表明,我们的方法优于最先进的方法。配备现有的Action Classifier,我们的方法还可以在时间动作本地化任务上实现显着性能。
translated by 谷歌翻译
今天的VIDSGG模型是基于建议的方法,即,它们首先生成众多配对的主题对象片段作为提案,然后对每个提案进行谓词分类。在本文中,我们认为这种普遍的基于建议的框架有三个固有的缺点:1)建议的地面真理谓词标签部分是正确的。 2)他们打破了相同主题对象对的不同谓词实例之间的高阶关系。 3)Vidsgg性能是由提案质量的大约。为此,我们向Vidsgg提出了一个新的分类 - 然后接地框架,可以避免所有三个被忽视的缺点。同时,在此框架下,我们将视频场景图形为临时二分形图形,其中实体和谓词是具有时隙的两种类型的节点,并且边缘在这些节点之间表示不同的语义角色。此配方充分利用了我们的新框架。因此,我们进一步提出了一种基于新的二分曲线图的SGG模型:大。具体而言,大由两部分组成:分类阶段和接地阶段,前者旨在对所有节点和边缘的类别进行分类,并且后者试图本地化每个关系实例的时间位置。两个Vidsgg数据集上的广泛消融已证明我们框架和大的有效性。
translated by 谷歌翻译
在计算机视觉中长期以来一直研究了时间行动定位。现有的最先进的动作定位方法将每个视频划分为多个动作单位(即,在一级方法中的两级方法和段中的提案),然后单独地对每个视频进行操作,而不明确利用他们在学习期间的关系。在本文中,我们声称,动作单位之间的关系在行动定位中发挥着重要作用,并且更强大的动作探测器不仅应捕获每个动作单元的本地内容,还应允许更广泛的视野与相关的上下文它。为此,我们提出了一般图表卷积模块(GCM),可以轻松插入现有的动作本地化方法,包括两阶段和单级范式。具体而言,我们首先构造一个图形,其中每个动作单元被表示为节点,并且两个动作单元之间作为边缘之间的关系。在这里,我们使用两种类型的关系,一个类型的关系,用于捕获不同动作单位之间的时间连接,另一类是用于表征其语义关系的另一个关系。特别是对于两级方法中的时间连接,我们进一步探索了两种不同的边缘,一个连接重叠动作单元和连接周围但脱节的单元的另一个。在我们构建的图表上,我们将图形卷积网络(GCNS)应用于模拟不同动作单位之间的关系,这能够了解更有信息的表示来增强动作本地化。实验结果表明,我们的GCM始终如一地提高了现有行动定位方法的性能,包括两阶段方法(例如,CBR和R-C3D)和一级方法(例如,D-SSAD),验证我们的一般性和有效性GCM。
translated by 谷歌翻译
基于文本的图像标题(TextCAP)需要同时对视觉内容的理解并读取图像文本以生成自然语言描述。虽然一项任务可以教导机器来了解复杂的人类环境进一步鉴于我们日常环境中的文本是全部的,但它在正常标题中提出了额外的挑战。基于文本的图像直观地包含丰富和复杂的多模式关系内容,即可以从多视图而不是单个字幕来扩散图像细节。当然,我们可以介绍额外的配对训练数据以显示图像描述的多样性,这一过程是具有额外文本的文本映射对注释的劳动密集型和耗时。基于上述洞察力,我们调查如何使用未配对的培训范例来生成专注于不同图像零件的不同标题。我们提出了多模式关系图对抗性推论(魔法)框架,用于多样化和未配对的Textcap。该框架可以自适应地构建图形之间的图像和模型复杂关系的多个多模式关系图来表示描述性分集。此外,从建模的图表中开发了一种级联的生成对抗性网络,以推断图像句子特征对齐和语言相干水平中的未配对字幕。我们验证了魔法在从图像的不同关系信息项目生成不同标题时的有效性。实验结果表明,魔法可以在不使用任何图像标题训练对的情况下产生非常有前途的结果。
translated by 谷歌翻译