We study mechanism design with predictions for the obnoxious facility location problem. We present deterministic strategyproof mechanisms that display tradeoffs between robustness and consistency on segments, squares, circles and trees. All these mechanisms are actually group strategyproof, with the exception of the case of squares, where manipulations from coalitions of two agents exist. We prove that these tradeoffs are optimal in the 1-dimensional case.
translated by 谷歌翻译
We study the classic facility location setting, where we are given $n$ clients and $m$ possible facility locations in some arbitrary metric space, and want to choose a location to build a facility. The exact same setting also arises in spatial social choice, where voters are the clients and the goal is to choose a candidate or outcome, with the distance from a voter to an outcome representing the cost of this outcome for the voter (e.g., based on their ideological differences). Unlike most previous work, we do not focus on a single objective to optimize (e.g., the total distance from clients to the facility, or the maximum distance, etc.), but instead attempt to optimize several different objectives simultaneously. More specifically, we consider the $l$-centrum family of objectives, which includes the total distance, max distance, and many others. We present tight bounds on how well any pair of such objectives (e.g., max and sum) can be simultaneously approximated compared to their optimum outcomes. In particular, we show that for any such pair of objectives, it is always possible to choose an outcome which simultaneously approximates both objectives within a factor of $1+\sqrt{2}$, and give a precise characterization of how this factor improves as the two objectives being optimized become more similar. For $q>2$ different centrum objectives, we show that it is always possible to approximate all $q$ of these objectives within a small constant, and that this constant approaches 3 as $q\rightarrow \infty$. Our results show that when optimizing only a few simultaneous objectives, it is always possible to form an outcome which is a significantly better than 3 approximation for all of these objectives.
translated by 谷歌翻译
我们专注于简单,一维的集体决策问题(通常被称为设施位置问题),并探索战略防护和比例公平的问题。我们为满足战略防护和不同程度的比例公平程度的机制提出了几种特征结果。我们还将其中一个机制描述为满足自然公平性和单调性性质的任何机制的独特均衡结果。最后,我们确定了战略和按比例公平机制,提供了满足相应公平公理的所有机制中的最佳福利最佳逼近。
translated by 谷歌翻译
已经研究了分层群集,并广泛使用作为数据分析的方法。最近,Dasgupta [2016]定义了精确的目标函数。给定一套$ n $数据点,每两个项目$ w_ {i,j} $ w_ {i,j} $ i和$ j $表示他们的相似性/ dive相似性,目标是建立递归(树)将数据点(项目)分区成连续较小的簇。他定义了一棵树$ t $的成本函数为$ compt(t)= \ sum_ {i,j \在[n]} \ big(w_ {i,j} \ times | t_ {i,j} | \大)$ where $ t_ {i,j} $是subtree植根于$ i $和$ j $最不常见的祖先,并呈现了这种聚类的第一个近似算法。然后Moseley和Wang [2017]考虑了Dasgupta的双重目标函数,以适应性的重量,并显示出随机分区和平均连锁有近似比1/3 $的近似值为1/3美元,这一系列工程为0.585 $ [Alon等al。 2020]。后来Cohen-Addad等。 [2019]认为与Dasgupta的客观函数相同,但对于基于不同的基于指标,称为$ Rev(T)$。结果表明,随机分区和平均连锁有2/3美元的比例仅为0.667078 $ 0.667078 $ [Charikar等人。 SODA2020]。我们的第一个主要结果是考虑$ Rev(T)$,并提出更精致的算法和仔细分析,实现近似值0.71604 $。我们还为基于异化的聚类介绍了一个新的目标函数。对于任何树$ t $,让$ h_ {i,j} $是$ i $和$ j $的常见祖先的数量。直观地,预计相似的项目将在尽可能深处留在同一群体内。因此,对于基于不同的指标,我们建议每棵树$ t $的成本,我们想要最小化,是$ cost_h(t)= \ sum_ {i,j \在[n]} \ big(w_ {我,j} \ times h_ {i,j} \ big)$。我们为此目标提供1.3977美元的价值。
translated by 谷歌翻译
我们考虑估计与I.I.D的排名$ 1 $矩阵因素的问题。高斯,排名$ 1 $的测量值,这些测量值非线性转化和损坏。考虑到非线性的两种典型选择,我们研究了从随机初始化开始的此非convex优化问题的天然交流更新规则的收敛性能。我们通过得出确定性递归,即使在高维问题中也是准确的,我们显示出算法的样本分割版本的敏锐收敛保证。值得注意的是,虽然无限样本的种群更新是非信息性的,并提示单个步骤中的精确恢复,但算法 - 我们的确定性预测 - 从随机初始化中迅速地收敛。我们尖锐的非反应分析也暴露了此问题的其他几种细粒度,包括非线性和噪声水平如何影响收敛行为。从技术层面上讲,我们的结果可以通过证明我们的确定性递归可以通过我们的确定性顺序来预测我们的确定性序列,而当每次迭代都以$ n $观测来运行时,我们的确定性顺序可以通过$ n^{ - 1/2} $的波动。我们的技术利用了源自有关高维$ m $估计文献的遗留工具,并为通过随机数据的其他高维优化问题的随机初始化而彻底地分析了高阶迭代算法的途径。
translated by 谷歌翻译
Arthur和Vassilvitskii的著名$ K $ -MEANS ++算法[SODA 2007]是解决实践中$ K $ - 英镑问题的最流行方式。该算法非常简单:它以随机的方式均匀地对第一个中心进行采样,然后始终将每个$ K-1 $中心的中心取样与迄今为止最接近最接近中心的平方距离成比例。之后,运行了劳埃德的迭代算法。已知$ k $ -Means ++算法可以返回预期的$ \ theta(\ log K)$近似解决方案。在他们的开创性工作中,Arthur和Vassilvitskii [Soda 2007]询问了其以下\ emph {greedy}的保证:在每一步中,我们采样了$ \ ell $候选中心,而不是一个,然后选择最小化新的中心成本。这也是$ k $ -Means ++在例如中实现的方式。流行的Scikit-Learn库[Pedregosa等人; JMLR 2011]。我们为贪婪的$ k $ -Means ++提供几乎匹配的下限和上限:我们证明它是$ o(\ ell^3 \ log^3 k)$ - 近似算法。另一方面,我们证明了$ \ omega的下限(\ ell^3 \ log^3 k / \ log^2(\ ell \ log k))$。以前,只有$ \ omega(\ ell \ log k)$下限是已知的[bhattacharya,eube,r \“ ogllin,schmidt; esa 2020),并且没有已知的上限。
translated by 谷歌翻译
本文展示了如何适应$ k $ -MEANS问题的几种简单和经典的基于采样的算法,以使用离群值设置。最近,Bhaskara等人。 (Neurips 2019)展示了如何将古典$ K $ -MEANS ++算法适应与异常值的设置。但是,他们的算法需要输出$ o(\ log(k)\ cdot z)$ outiers,其中$ z $是true Outliers的数量,以匹配$ o(\ log k)$ - 近似值的$ k的近似保证$ -Means ++。在本文中,我们以他们的想法为基础,并展示了如何适应几个顺序和分布式的$ k $ - 均值算法,但使用离群值来设置,但具有更强的理论保证:我们的算法输出$(1+ \ VAREPSILON)z $ OUTLIERS Z $ OUTLIERS在实现$ o(1 / \ varepsilon)$ - 近似目标函数的同时。在顺序世界中,我们通过改编Lattanzi和Sohler的最新算法来实现这一目标(ICML 2019)。在分布式设置中,我们适应了Guha等人的简单算法。 (IEEE Trans。知道和数据工程2003)以及Bahmani等人的流行$ K $ -Means $ \ | $。 (PVLDB 2012)。我们技术的理论应用是一种具有运行时间$ \ tilde {o}(nk^2/z)$的算法,假设$ k \ ll z \ ll n $。这与Omacle模型中此问题的$ \ Omega(NK^2/z)$的匹配下限相互补。
translated by 谷歌翻译
K-MEDIAN和K-MEACE是聚类算法的两个最受欢迎的目标。尽管有密集的努力,但对这些目标的近似性很好地了解,特别是在$ \ ell_p $ -metrics中,仍然是一个重大的开放问题。在本文中,我们在$ \ ell_p $ -metrics中显着提高了文献中已知的近似因素的硬度。我们介绍了一个名为Johnson覆盖假说(JCH)的新假设,这大致断言设定系统上的良好的Max K-Coverage问题难以近似于1-1 / e,即使是成员图形设置系统是Johnson图的子图。然后,我们展示了Cohen-Addad和Karthik引入的嵌入技术的概括(Focs'19),JCH意味着K-MEDIAN和K-MERION在$ \ ell_p $ -metrics中的近似结果的近似值的硬度为近距离对于一般指标获得的人。特别地,假设JCH我们表明很难近似K-Meator目标:$ \ Bullet $离散情况:$ \ ell_1 $ 3.94 - $ \ ell_2中的1.73因素为1.73倍$$ - 这分别在UGC下获得了1.56和1.17的先前因子。 $ \ bullet $持续案例:$ \ ell_1 $ 2210 - $ \ ell_2 $的$ \ ell_1 $ 210。$ \ ell_2 $-metric;这在UGC下获得的$ \ ell_2 $的$ \ ell_2 $的先前因子提高了1.07。对于K-Median目标,我们还获得了类似的改进。此外,我们使用Dinure等人的工作证明了JCH的弱版本。 (Sicomp'05)在超图顶点封面上,恢复Cohen-Addad和Karthik(Focs'19 Focs'19)上面的所有结果(近)相同的不可识别因素,但现在在标准的NP $ \ NEQ $ P假设下(代替UGC)。
translated by 谷歌翻译
我们考虑从数据学习树结构ising模型的问题,使得使用模型计算的后续预测是准确的。具体而言,我们的目标是学习一个模型,使得小组变量$ S $的后海报$ p(x_i | x_s)$。自推出超过50年以来,有效计算最大似然树的Chow-Liu算法一直是学习树结构图形模型的基准算法。 [BK19]示出了关于以预测的局部总变化损耗的CHOW-LIU算法的样本复杂性的界限。虽然这些结果表明,即使在恢复真正的基础图中也可以学习有用的模型是不可能的,它们的绑定取决于相互作用的最大强度,因此不会达到信息理论的最佳选择。在本文中,我们介绍了一种新的算法,仔细结合了Chow-Liu算法的元素,以便在预测的损失下有效地和最佳地学习树ising模型。我们的算法对模型拼写和对抗损坏具有鲁棒性。相比之下,我们表明庆祝的Chow-Liu算法可以任意次优。
translated by 谷歌翻译
A diffusion auction is a market to sell commodities over a social network, where the challenge is to incentivize existing buyers to invite their neighbors in the network to join the market. Existing mechanisms have been designed to solve the challenge in various settings, aiming at desirable properties such as non-deficiency, incentive compatibility and social welfare maximization. Since the mechanisms are employed in dynamic networks with ever-changing structures, buyers could easily generate fake nodes in the network to manipulate the mechanisms for their own benefits, which is commonly known as the Sybil attack. We observe that strategic agents may gain an unfair advantage in existing mechanisms through such attacks. To resist this potential attack, we propose two diffusion auction mechanisms, the Sybil tax mechanism (STM) and the Sybil cluster mechanism (SCM), to achieve both Sybil-proofness and incentive compatibility in the single-item setting. Our proposal provides the first mechanisms to protect the interests of buyers against Sybil attacks with a mild sacrifice of social welfare and revenue.
translated by 谷歌翻译
相称性是一个有吸引力的公平概念,已应用于一系列问题,包括设施位置问题,这是社交选择中的经典问题。在我们的工作中,我们提出了一个称为强比例的概念,该概念可确保当不同位置有两组代理时,两组都会产生相同的总成本。我们表明,尽管强度比例是一个充分动机且基本的公理,但没有确定性的策略性防护机制来满足该财产。然后,我们确定一种称为随机排名的随机机制(该机制均匀地选择了$ k $在$ 1 $到$ n $之间的数字$ k $,并在$ k $'的第一个最高代理位置定位该设施),可以满足预期的强烈比例。我们的主要定理将随机列表描述为实现普遍真实,普遍匿名性和强烈比例的独特机制,在所有随机机制之间的期望中。最后,我们通过平均范围的机制证明,可以通过削弱预期的普遍真实性来实现更强大的前柱公平保证。
translated by 谷歌翻译
大多数算法研究到目前为止,多智能经纪信息设计的研究专注于没有代理商外部性的限制情况;一些例外调查了真正的战略游戏,如零和游戏和二价格拍卖,但只关注最佳的公共信令。本文启动了\ emph {public}和\ emph {privy}信号传导的算法信息设计,其中of基本的外部性,即单例拥塞游戏,在今天的数字经济中的应用范围广,机器调度,路由,对于公共和私人信令等,我们表明,当资源数量是常数时,可以有效地计算最佳信息设计。为了我们的知识,这是一系列高效的\ EMPH {精确}算法,用于在简明地代表的许多玩家游戏中的信息设计。我们的结果符合新颖的技术,如开发某些“减少形式”,以便在公共信令中紧凑地表征均衡或代表私人信令中的球员边际信仰。当有许多资源时,我们会显示计算难扰性结果。为了克服多个均衡问题,这里我们介绍了均衡 - \ EMPH {忽视}硬度的新概念,这条规定了计算良好信令方案的任何可能性,而不管均衡选择规则如何。
translated by 谷歌翻译
给定尺寸$ d $中的独立标准高斯点$ v_1,\ ldots,v_n $,对于$(n,d)$的值(n,d)$的值很高,概率很高,同时通过所有要点?将椭圆形拟合到随机点的基本问题与低级别矩阵分解,独立的组件分析和主成分分析有连接。基于有力的数值证据,桑德森,帕里洛和威尔斯基[Proc。关于决策和控制会议,第6031-6036页,2013年]猜想,椭圆形拟合问题的问题从可行的到不可行的$ n $增加,并在$ n \ sim d^2/4处急剧阈值$。我们通过为某些$ n = \ omega(\,d^2/\ log^5(d)\,)$构建合适的椭圆形来解决这个猜想,从而改善了Ghosh等人的先前工作。 [Proc。关于计算机科学基础的研讨会,第954-965、2020页],需要$ n = o(d^{3/2})$。我们的证明证明了Saunderson等人的最小二乘结构的可行性。使用对特定非标准随机矩阵的特征向量和特征值进行仔细的分析。
translated by 谷歌翻译
The research area of algorithms with predictions has seen recent success showing how to incorporate machine learning into algorithm design to improve performance when the predictions are correct, while retaining worst-case guarantees when they are not. Most previous work has assumed that the algorithm has access to a single predictor. However, in practice, there are many machine learning methods available, often with incomparable generalization guarantees, making it hard to pick a best method a priori. In this work we consider scenarios where multiple predictors are available to the algorithm and the question is how to best utilize them. Ideally, we would like the algorithm's performance to depend on the quality of the best predictor. However, utilizing more predictions comes with a cost, since we now have to identify which prediction is the best. We study the use of multiple predictors for a number of fundamental problems, including matching, load balancing, and non-clairvoyant scheduling, which have been well-studied in the single predictor setting. For each of these problems we introduce new algorithms that take advantage of multiple predictors, and prove bounds on the resulting performance.
translated by 谷歌翻译
预测到优化的框架在许多实际设置中都是基础:预测优化问题的未知参数,然后使用参数的预测值解决该问题。与参数的预测误差相反,在这种环境中的自然损失函数是考虑预测参数引起的决策成本。最近在Elmachtoub和Grigas(2022)中引入了此损失函数,并被称为智能预测 - 优化(SPO)损失。在这项工作中,我们试图提供有关在SPO损失的背景下,预测模型在训练数据中概括的预测模型的性能如何。由于SPO损失是非凸面和非lipschitz,因此不适用推导概括范围的标准结果。我们首先根据natarajan维度得出界限,在多面体可行区域中,在极端点数中最大程度地比对数扩展,但是,在一般凸的可行区域中,对决策维度具有线性依赖性。通过利用SPO损耗函数的结构和可行区域的关键特性,我们将其表示为强度属性,我们可以显着提高对决策和特征维度的依赖。我们的方法和分析依赖于围绕有问题的预测的利润,这些预测不会产生独特的最佳解决方案,然后在修改后的利润率SPO损失函数的背景下提供了概括界限,而SPO损失函数是Lipschitz的连续。最后,我们表征了强度特性,并表明可以有效地计算出具有显式极端表示的强凸体和多面体的修饰的SPO损耗。
translated by 谷歌翻译
在深度学习中的优化分析是连续的,专注于(变体)梯度流动,或离散,直接处理(变体)梯度下降。梯度流程可符合理论分析,但是风格化并忽略计算效率。它代表梯度下降的程度是深度学习理论的一个开放问题。目前的论文研究了这个问题。将梯度下降视为梯度流量初始值问题的近似数值问题,发现近似程度取决于梯度流动轨迹周围的曲率。然后,我们表明,在具有均匀激活的深度神经网络中,梯度流动轨迹享有有利的曲率,表明它们通过梯度下降近似地近似。该发现允许我们将深度线性神经网络的梯度流分析转换为保证梯度下降,其几乎肯定会在随机初始化下有效地收敛到全局最小值。实验表明,在简单的深度神经网络中,具有传统步长的梯度下降确实接近梯度流。我们假设梯度流动理论将解开深入学习背后的奥秘。
translated by 谷歌翻译
我们研究了与给定的无向图$ g $相对应的图形模型的最大似然估计的问题。我们表明,最大似然估计(MLE)是几个帐篷函数的指数的乘积,每个最大集团的$ g $。虽然图形模型中的一组对数符号密度是无限维度的,但我们的结果表明,可以通过求解有限维凸优化问题来找到MLE。我们提供实施和一些示例。此外,我们证明MLE存在并且具有概率为1,只要样品数量大于$ g $ chordal时最大的$ g $集团的大小。我们证明,当图$ g $是集团的不交联时,MLE是一致的。最后,我们讨论了$ g $的图形模型中的对数 - 串联密度在$ g $中具有对数符号分解的条件。
translated by 谷歌翻译
For centuries, it has been widely believed that the influence of a small coalition of voters is negligible in a large election. Consequently, there is a large body of literature on characterizing the asymptotic likelihood for an election to be influenced, especially by the manipulation of a single voter, establishing an $O(\frac{1}{\sqrt n})$ upper bound and an $\Omega(\frac{1}{n^{67}})$ lower bound for many commonly studied voting rules under the i.i.d.~uniform distribution, known as Impartial Culture (IC) in social choice, where $n$ is the number is voters. In this paper, we extend previous studies in three aspects: (1) we consider a more general and realistic semi-random model, where a distribution adversary chooses a worst-case distribution and then a data adversary modifies up to $\psi$ portion of the data, (2) we consider many coalitional influence problems, including coalitional manipulation, margin of victory, and various vote controls and bribery, and (3) we consider arbitrary and variable coalition size $B$. Our main theorem provides asymptotically tight bounds on the semi-random likelihood of the existence of a size-$B$ coalition that can successfully influence the election under a wide range of voting rules. Applications of the main theorem and its proof techniques resolve long-standing open questions about the likelihood of coalitional manipulability under IC, by showing that the likelihood is $\Theta\left(\min\left\{\frac{B}{\sqrt n}, 1\right\}\right)$ for many commonly studied voting rules. The main technical contribution is a characterization of the semi-random likelihood for a Poisson multinomial variable (PMV) to be unstable, which we believe to be a general and useful technique with independent interest.
translated by 谷歌翻译
我们研究了多翼投票的{pac}可学习性,重点是基于批准的委员会评分(ABC)规则。这些是对批准选票的个人资料的投票规则,每个选民都批准了一些候选人。根据ABCS规则,$ K $候选人的每个委员会都从每个选民那里收集一个分数,这取决于选民投票的规模以及与委员会的交汇处的规模。然后,最高得分的委员会是获胜的委员会。我们的目标是使用有关少数采样配置文件的获胜委员会的信息来学习目标规则(即,学习相应的评分功能)。尽管与单打选举相比,尽管存在指数级的结果,但我们表明样本复杂性仍然很低:多项式数量的样本具有足够的信息来以高度的置信度和准确性来学习目标规则。不幸的是,即使需要解决这些样品学习的简单任务也很难。我们证明,确定是否存在某些ABC规则,使给定的委员会在给定的个人资料中获胜是一个计算问题上的问题。我们的结果扩展到了顺序Thiele规则的类别,由于其简单性,该规则最近受到了关注。
translated by 谷歌翻译
计算Wassersein BaryCenters(A.K.A.最佳运输重构)是由于数据科学的许多应用,最近引起了相当大的关注的几何问题。虽然存在任何固定维度的多项式时间算法,但所有已知的运行时间都在维度中呈指数级。这是一个开放的问题,无论是这种指数依赖性是否可改进到多项式依赖性。本文证明,除非P = NP,答案是否定的。这揭示了Wassersein的BaryCenter计算的“维度诅咒”,其不会发生最佳运输计算。此外,我们对计算Wassersein的硬度结果延伸到近似计算,看似简单的问题案例,以及在其他最佳运输指标中平均概率分布。
translated by 谷歌翻译