分子的产生,尤其是从头开始产生3D分子几何形状(即3D \ textit {de Novo} Generation)已成为药物设计中的一项基本任务。现有的基于扩散的3D分子生成方法可能会遭受性能不令人满意的性能,尤其是在产生大分子时。同时,产生的分子缺乏足够的多样性。本文提出了一个新的扩散模型,以应对这两个挑战。首先,原子关系不在分子的3D点云表示中。因此,现有生成模型很难捕获潜在的原子间力和丰富的局部约束。为了应对这一挑战,我们建议增强潜在的原子间力,并进一步涉及双重模棱两可的编码器,以编码不同强度的原子质力。其次,现有的基于扩散的模型基本上是沿数据密度梯度的几何元素。这样的过程在Langevin动力学的中间步骤中缺乏足够的探索。为了解决这个问题,我们在每个扩散/反向步骤中引入了一个分布控制变量,以实施彻底的探索并进一步改善发电多样性。对多个基准测试的广泛实验表明,所提出的模型明显优于无条件和条件生成任务的现有方法。我们还进行案例研究以帮助了解产生分子的理化特性。
translated by 谷歌翻译
这项工作引入了3D分子生成的扩散模型,该模型与欧几里得转化一样。我们的e(3)e象扩散模型(EDM)学会了通过均衡网络的扩散过程,该网络共同在连续(原子坐标)和分类特征(原子类型)上共同运行。此外,我们提供了一种概率分析,该分析使用我们的模型接受了分子的可能性计算。在实验上,所提出的方法显着优于先前关于生成样品质量和训练时效率的3D分子生成方法。
translated by 谷歌翻译
Generating molecules that bind to specific proteins is an important but challenging task in drug discovery. Previous works usually generate atoms in an auto-regressive way, where element types and 3D coordinates of atoms are generated one by one. However, in real-world molecular systems, the interactions among atoms in an entire molecule are global, leading to the energy function pair-coupled among atoms. With such energy-based consideration, the modeling of probability should be based on joint distributions, rather than sequentially conditional ones. Thus, the unnatural sequentially auto-regressive modeling of molecule generation is likely to violate the physical rules, thus resulting in poor properties of the generated molecules. In this work, a generative diffusion model for molecular 3D structures based on target proteins as contextual constraints is established, at a full-atom level in a non-autoregressive way. Given a designated 3D protein binding site, our model learns the generative process that denoises both element types and 3D coordinates of an entire molecule, with an equivariant network. Experimentally, the proposed method shows competitive performance compared with prevailing works in terms of high affinity with proteins and appropriate molecule sizes as well as other drug properties such as drug-likeness of the generated molecules.
translated by 谷歌翻译
这项工作引入了离题,这是一种用于生成具有分类节点和边缘属性图的图形的离散denoising扩散模型。我们的模型定义了一个扩散过程,该过程逐步编辑了具有噪声(添加或删除边缘,更改类别)的图形以及学会恢复此过程的图形变压器网络。有了这两种成分,我们将分布学习将上的分布学习减少到一个简单的分类任务序列。我们通过提出一个新的马尔可夫噪声模型来进一步提高样品质量,该模型在扩散过程中保留节点和边缘类型的边际分布,并通过在每个扩散步骤中添加从嘈杂图中得出的辅助图理论特征。最后,我们提出了一个指导程序,以根据图形级特征调理生成。总体而言,离题可以在分子和非分子数据集上达到最新性能,在平面图数据集上,有效性提高了3倍。特别是,这是第一个模型,将鳞片缩放到包含130万个药物样分子的大型鳄梨调子数据集,而无需使用分子特异性表示,例如微笑或片段。
translated by 谷歌翻译
基于AI的分子生成为大量生物医学科学和工程(例如抗体设计,水解酶工程或疫苗开发)提供了一种有希望的方法。由于分子受物理定律的管辖,所以关键的挑战是将先前的信息纳入训练程序中,以产生高质量和现实的分子。我们提出了一种简单而新颖的方法,以引导基于扩散的生成模型培训具有物理和统计的先验信息。这是通过构建物理知情的扩散桥,即保证在固定末端产生给定观察的随机过程来实现的。我们开发了一种基于Lyapunov函数的方法来构建和确定桥梁,并提出了许多有关高质量分子生成和均匀性促进的3D点云生成的信息丰富的先验桥的建议。通过全面的实验,我们表明我们的方法为3D生成任务提供了强大的方法,从而产生具有更好质量和稳定性得分的分子结构,并且具有更高质量的分布点云。
translated by 谷歌翻译
Molecular conformation generation aims to generate three-dimensional coordinates of all the atoms in a molecule and is an important task in bioinformatics and pharmacology. Previous methods usually first predict the interatomic distances, the gradients of interatomic distances or the local structures (e.g., torsion angles) of a molecule, and then reconstruct its 3D conformation. How to directly generate the conformation without the above intermediate values is not fully explored. In this work, we propose a method that directly predicts the coordinates of atoms: (1) the loss function is invariant to roto-translation of coordinates and permutation of symmetric atoms; (2) the newly proposed model adaptively aggregates the bond and atom information and iteratively refines the coordinates of the generated conformation. Our method achieves the best results on GEOM-QM9 and GEOM-Drugs datasets. Further analysis shows that our generated conformations have closer properties (e.g., HOMO-LUMO gap) with the groundtruth conformations. In addition, our method improves molecular docking by providing better initial conformations. All the results demonstrate the effectiveness of our method and the great potential of the direct approach. The code is released at https://github.com/DirectMolecularConfGen/DMCG
translated by 谷歌翻译
本文介绍了欧几里德对称的生成模型:E(n)等分反的归一化流量(E-NFS)。为了构建E-NFS,我们采用鉴别性E(n)图神经网络,并将它们集成为微分方程,以获得可逆的等式功能:连续时间归一化流量。我们展示了E-NFS在诸如DW4和LJ13的粒子系统中的文献中的基础和现有方法,以及QM9的分子在对数似然方面。据我们所知,这是第一次流动,共同生成3D中的分子特征和位置。
translated by 谷歌翻译
产生稳定材料的周期性结构是材料设计界的长期挑战。这个任务很难,因为稳定的材料只存在于原子的所有可能的周期性布置的低维子空间中:1)坐标必须位于量子力学限定的局部能量最小,而2)全球稳定性也需要遵循结构不同原子类型之间的复杂,但特定的粘合偏好。现有方法未能纳入这些因素,并且经常缺乏适当的侵略者。我们提出了一种晶体扩散变分性AutoEncoder(CDVAE),其捕获材料稳定性的物理感应偏差。通过从稳定材料的数据分布中学习,解码器在扩散过程中产生材料,其将原子坐标朝向较低能量状态移动并更新原子类型以满足邻居之间的粘接偏好。我们的模型还明确地编码了周期性边界的交互,尊重置换,转换,旋转和周期性修正。我们在三个任务中显着优于过去的方法:1)重建输入结构,2)产生有效,多样化和现实的材料和3)产生优化特定性质的材料。我们还为更广泛的机器学习界提供了几个标准数据集和评估指标。
translated by 谷歌翻译
Molecular dynamics (MD) has long been the de facto choice for simulating complex atomistic systems from first principles. Recently deep learning models become a popular way to accelerate MD. Notwithstanding, existing models depend on intermediate variables such as the potential energy or force fields to update atomic positions, which requires additional computations to perform back-propagation. To waive this requirement, we propose a novel model called DiffMD by directly estimating the gradient of the log density of molecular conformations. DiffMD relies on a score-based denoising diffusion generative model that perturbs the molecular structure with a conditional noise depending on atomic accelerations and treats conformations at previous timeframes as the prior distribution for sampling. Another challenge of modeling such a conformation generation process is that a molecule is kinetic instead of static, which no prior works have strictly studied. To solve this challenge, we propose an equivariant geometric Transformer as the score function in the diffusion process to calculate corresponding gradients. It incorporates the directions and velocities of atomic motions via 3D spherical Fourier-Bessel representations. With multiple architectural improvements, we outperform state-of-the-art baselines on MD17 and isomers of C7O2H10 datasets. This work contributes to accelerating material and drug discovery.
translated by 谷歌翻译
分子模拟的粗粒度(CG)通过将选定的原子分组为伪珠并大幅加速模拟来简化粒子的表示。但是,这种CG程序会导致信息损失,从而使准确的背景映射,即从CG坐标恢复细粒度(FG)坐标,这是一个长期存在的挑战。受生成模型和e象网络的最新进展的启发,我们提出了一个新型模型,该模型严格嵌入了背态转换的重要概率性质和几何一致性要求。我们的模型将FG的不确定性编码为不变的潜在空间,并通过Equivariant卷积将其解码为FG几何形状。为了标准化该领域的评估,我们根据分子动力学轨迹提供了三个综合基准。实验表明,我们的方法始终恢复更现实的结构,并以显着的边距胜过现有的数据驱动方法。
translated by 谷歌翻译
生成图形结构化数据需要学习图形的基础分布。然而,这是一个具有挑战性的问题,先前的图生成方法要么无法捕获图形的置换率属性,要么无法充分对节点和边缘之间的复杂依赖性进行建模,这对于生成现实世界图(例如分子)至关重要。为了克服此类局限性,我们为具有连续时间框架的图形提出了一种基于分数的新型生成模型。具体而言,我们提出了一个新的图扩散过程,该过程通过随机微分方程(SDE)系统建模节点和边缘的联合分布。然后,我们得出了针对建议的扩散过程量身定制的新的分数匹配目标,以估算关节对数密度相对于每个组件的梯度,并为SDE系统引入一个新的求解器,以从反向扩散过程中有效采样。我们验证了不同数据集的图形生成方法,在该数据集上,它要么在其上取得了比基线显着或竞争性能的。进一步的分析表明,我们的方法能够生成接近训练分布但不违反化学价值规则的分子,从而证明了SDE系统在建模节点边缘关系中的有效性。我们的代码可在https://github.com/harryjo97/gdss上找到。
translated by 谷歌翻译
没有标签的预处理分子表示模型是各种应用的基础。常规方法主要是处理2D分子图,并仅专注于2D任务,使其预验证的模型无法表征3D几何形状,因此对于下游3D任务有缺陷。在这项工作中,我们从完整而新颖的意义上处理了3D分子预处理。特别是,我们首先提议采用基于能量的模型作为预处理的骨干,该模型具有实现3D空间对称性的优点。然后,我们为力预测开发了节点级预处理损失,在此过程中,我们进一步利用了Riemann-Gaussian分布,以确保损失为E(3) - 不变,从而实现了更多的稳健性。此外,还利用了图形噪声量表预测任务,以进一步促进最终的性能。我们评估了从两个具有挑战性的3D基准:MD17和QM9的大规模3D数据集GEOM-QM9预测的模型。实验结果支持我们方法对当前最新预处理方法的更好疗效,并验证我们设计的有效性。
translated by 谷歌翻译
Learning the underlying distribution of molecular graphs and generating high-fidelity samples is a fundamental research problem in drug discovery and material science. However, accurately modeling distribution and rapidly generating novel molecular graphs remain crucial and challenging goals. To accomplish these goals, we propose a novel Conditional Diffusion model based on discrete Graph Structures (CDGS) for molecular graph generation. Specifically, we construct a forward graph diffusion process on both graph structures and inherent features through stochastic differential equations (SDE) and derive discrete graph structures as the condition for reverse generative processes. We present a specialized hybrid graph noise prediction model that extracts the global context and the local node-edge dependency from intermediate graph states. We further utilize ordinary differential equation (ODE) solvers for efficient graph sampling, based on the semi-linear structure of the probability flow ODE. Experiments on diverse datasets validate the effectiveness of our framework. Particularly, the proposed method still generates high-quality molecular graphs in a limited number of steps.
translated by 谷歌翻译
In this work, we propose MEDICO, a Multi-viEw Deep generative model for molecule generation, structural optimization, and the SARS-CoV-2 Inhibitor disCOvery. To the best of our knowledge, MEDICO is the first-of-this-kind graph generative model that can generate molecular graphs similar to the structure of targeted molecules, with a multi-view representation learning framework to sufficiently and adaptively learn comprehensive structural semantics from targeted molecular topology and geometry. We show that our MEDICO significantly outperforms the state-of-the-art methods in generating valid, unique, and novel molecules under benchmarking comparisons. In particular, we showcase the multi-view deep learning model enables us to generate not only the molecules structurally similar to the targeted molecules but also the molecules with desired chemical properties, demonstrating the strong capability of our model in exploring the chemical space deeply. Moreover, case study results on targeted molecule generation for the SARS-CoV-2 main protease (Mpro) show that by integrating molecule docking into our model as chemical priori, we successfully generate new small molecules with desired drug-like properties for the Mpro, potentially accelerating the de novo design of Covid-19 drugs. Further, we apply MEDICO to the structural optimization of three well-known Mpro inhibitors (N3, 11a, and GC376) and achieve ~88% improvement in their binding affinity to Mpro, demonstrating the application value of our model for the development of therapeutics for SARS-CoV-2 infection.
translated by 谷歌翻译
We propose an algorithm for learning a conditional generative model of a molecule given a target. Specifically, given a receptor molecule that one wishes to bind to, the conditional model generates candidate ligand molecules that may bind to it. The distribution should be invariant to rigid body transformations that act $\textit{jointly}$ on the ligand and the receptor; it should also be invariant to permutations of either the ligand or receptor atoms. Our learning algorithm is based on a continuous normalizing flow. We establish semi-equivariance conditions on the flow which guarantee the aforementioned invariance conditions on the conditional distribution. We propose a graph neural network architecture which implements this flow, and which is designed to learn effectively despite the vast differences in size between the ligand and receptor. We evaluate our method on the CrossDocked2020 dataset, attaining a significant improvement in binding affinity over competing methods.
translated by 谷歌翻译
我们考虑一拍概率解码器,该解码器在分布上映射到集合或图形之前的矢量形状。这些功能可以集成到变分性自动化器(VAE),生成的对抗网络(GAN)或标准化流动中,并在药物发现中具有重要应用。设置和图形生成最常通过生成点(有时是边缘权重)i.i.d.从正态分布,使用变压器层或图形神经网络处理它们以及先前的向量。该架构旨在产生可交换的分布(集合的所有排列同样可能),但由于I.I.D的随机性,难以训练。一代。我们提出了一种新的对抗性定义,并表明,VAES和GAN中的交换性实际上是不必要的。然后,我们引入TOP-N,一个确定性,不可交换的集合创建机制,该创建机制学会从培训参考集中选择最相关的点。 Top-n可以替换i.i.d.在任何VAE或GaN中生成 - 它更容易训练,更好地捕获数据中的复杂依赖关系。 Top-n优于I.I.D在SetMnist重建时生成15%,生成较近合成分子数据集的真正分布的34%的集合,并且能够在经典QM9数据集上培训时产生更多样化的分子。随着一次性生成的改进基础,我们的算法有助于设计更有效的分子生成方法。
translated by 谷歌翻译
图表无处不在地编码许多域中现实世界对象的关系信息。图形生成的目的是从类似于观察到的图形的分布中生成新图形,由于深度学习模型的最新进展,人们的关注越来越大。在本文中,我们对现有的图形生成文献进行了全面综述,从各种新兴方法到其广泛的应用领域。具体来说,我们首先提出了深图生成的问题,并与几个相关的图形学习任务讨论了它的差异。其次,我们根据模型架构将最新方法分为三类,并总结其生成策略。第三,我们介绍了深图生成的三个关键应用领域。最后,我们重点介绍了深图生成的未来研究中的挑战和机遇。
translated by 谷歌翻译
在本文中,我们提出了多分辨率的等级图变分性Autiachoders(MGVAE),第一层级生成模型以多分辨率和等分的方式学习和生成图。在每个分辨率级别,MGVAE采用更高的顺序消息,以便在学习中对图进行编码,同时学习将其分配到互斥的集群中并赋予最终产生潜在分布的层次结构的较低分辨率。然后,MGVAE构造分层生成模型以改变地解码成粗糙的图形的层次。重要的是,我们提出的框架是关于节点排序的端到端排列等级。MGVAE通过多种生成任务实现竞争结果,包括一般图生成,分子产生,无监督的分子表示学习,以预测分子特性,引用图的链路预测,以及基于图的图像生成。
translated by 谷歌翻译
群体模棱两可(例如,SE(3)均衡性)是科学的关键物理对称性,从经典和量子物理学到计算生物学。它可以在任意参考转换下实现强大而准确的预测。鉴于此,已经为将这种对称性编码为深神经网络而做出了巨大的努力,该网络已被证明可以提高下游任务的概括性能和数据效率。构建模棱两可的神经网络通常会带来高计算成本以确保表现力。因此,如何更好地折衷表现力和计算效率在模棱两可的深度学习模型的设计中起着核心作用。在本文中,我们提出了一个框架来构建可以有效地近似几何量的se(3)等效图神经网络。受差异几何形状和物理学的启发,我们向图形神经网络介绍了局部完整帧,因此可以将以给定订单的张量信息投射到框架上。构建本地框架以形成正常基础,以避免方向变性并确保完整性。由于框架仅是由跨产品操作构建的,因此我们的方法在计算上是有效的。我们在两个任务上评估我们的方法:牛顿力学建模和平衡分子构象的产生。广泛的实验结果表明,我们的模型在两种类型的数据集中达到了最佳或竞争性能。
translated by 谷歌翻译
由于标记的分子数量有限,预处理分子表示在药物和材料发现中的应用至关重要,但是大多数现有工作都集中在2D分子图上进行预处理。然而,对3D几何结构进行预处理的力量已经较少探索,因此难以找到足够的代理任务,以增强预训练的能力,从而有效地从几何结构中提取基本特征。由3D分子的动态性质激励,其中3D欧几里得空间中分子的连续运动形成平滑的势能表面,我们提出了一个3D坐标,以降级预处理框架来建模这种能量景观。利用SE(3) - 激烈的得分匹配方法,我们提出了SE(3)-DDM,其中坐标定位代理任务有效地归结为分子中成对原子距离的脱氧。我们的全面实验证实了我们提出的方法的有效性和鲁棒性。
translated by 谷歌翻译