我们探索了在流行的集中式培训范式(CTDE)中流行的集中式培训范式中的多代理深度强化学习的价值分解解决方案。作为公认的CTDE解决方案,加权QMIX是星际争霸多代理挑战(SMAC)的尖端,并在QMIX上实施了加权方案,以更加重视最佳的关节动作。但是,固定重量需要根据应用程序场景进行手动调整,该场景痛苦地防止加权QMIX用于更广泛的工程应用中。在本文中,我们首先使用普通的一步矩阵游戏(OMG)证明了加权QMIX的缺陷,无论选择重量如何,加权QMIX努力解决非单调的价值分解问题,并具有很大的差异奖励分布。然后,我们将价值分解的问题描述为一种不足的单调的健壮回归问题,并首先尝试从信息理论学习的角度为价值分解问题提供解决方案。我们引入最大Correntropy Criterion(MCC)作为成本函数,以动态调整重量以消除奖励分布中最小值的影响。我们简化了实现,并提出了一种称为MCVD的新算法。对OMG进行的初步实验表明,MCVD可以处理非单调的值分解问题,并且对核带宽选择的耐受性很高。进一步的实验是在合作游动和多个SMAC场景的情况下进行的,其中MCVD表现出前所未有的实施,广泛的适用性和稳定性。
translated by 谷歌翻译
政策梯度方法在多智能体增强学习中变得流行,但由于存在环境随机性和探索代理(即非公平性​​),它们遭受了高度的差异,这可能因信用分配难度而受到困扰。结果,需要一种方法,该方法不仅能够有效地解决上述两个问题,而且需要足够强大地解决各种任务。为此,我们提出了一种新的多代理政策梯度方法,称为强大的本地优势(ROLA)演员 - 评论家。 Rola允许每个代理人将个人动作值函数作为当地评论家,以及通过基于集中评论家的新型集中培训方法来改善环境不良。通过使用此本地批评,每个代理都计算基准,以减少对其策略梯度估计的差异,这导致含有其他代理的预期优势动作值,这些选项可以隐式提高信用分配。我们在各种基准测试中评估ROLA,并在许多最先进的多代理政策梯度算法上显示其鲁棒性和有效性。
translated by 谷歌翻译
We explore value-based solutions for multi-agent reinforcement learning (MARL) tasks in the centralized training with decentralized execution (CTDE) regime popularized recently. However, VDN and QMIX are representative examples that use the idea of factorization of the joint actionvalue function into individual ones for decentralized execution. VDN and QMIX address only a fraction of factorizable MARL tasks due to their structural constraint in factorization such as additivity and monotonicity. In this paper, we propose a new factorization method for MARL, QTRAN, which is free from such structural constraints and takes on a new approach to transforming the original joint action-value function into an easily factorizable one, with the same optimal actions. QTRAN guarantees more general factorization than VDN or QMIX, thus covering a much wider class of MARL tasks than does previous methods. Our experiments for the tasks of multi-domain Gaussian-squeeze and modified predator-prey demonstrate QTRAN's superior performance with especially larger margins in games whose payoffs penalize non-cooperative behavior more aggressively.
translated by 谷歌翻译
最先进的多机构增强学习(MARL)方法为各种复杂问题提供了有希望的解决方案。然而,这些方法都假定代理执行同步的原始操作执行,因此它们不能真正可扩展到长期胜利的真实世界多代理/机器人任务,这些任务固有地要求代理/机器人以异步的理由,涉及有关高级动作选择的理由。不同的时间。宏观行动分散的部分可观察到的马尔可夫决策过程(MACDEC-POMDP)是在完全合作的多代理任务中不确定的异步决策的一般形式化。在本论文中,我们首先提出了MacDec-Pomdps的一组基于价值的RL方法,其中允许代理在三个范式中使用宏观成果功能执行异步学习和决策:分散学习和控制,集中学习,集中学习和控制,以及分散执行的集中培训(CTDE)。在上述工作的基础上,我们在三个训练范式下制定了一组基于宏观行动的策略梯度算法,在该训练范式下,允许代理以异步方式直接优化其参数化策略。我们在模拟和真实的机器人中评估了我们的方法。经验结果证明了我们在大型多代理问题中的方法的优势,并验证了我们算法在学习具有宏观actions的高质量和异步溶液方面的有效性。
translated by 谷歌翻译
Value factorisation is a useful technique for multi-agent reinforcement learning (MARL) in global reward game, however its underlying mechanism is not yet fully understood. This paper studies a theoretical framework for value factorisation with interpretability via Shapley value theory. We generalise Shapley value to Markov convex game called Markov Shapley value (MSV) and apply it as a value factorisation method in global reward game, which is obtained by the equivalence between the two games. Based on the properties of MSV, we derive Shapley-Bellman optimality equation (SBOE) to evaluate the optimal MSV, which corresponds to an optimal joint deterministic policy. Furthermore, we propose Shapley-Bellman operator (SBO) that is proved to solve SBOE. With a stochastic approximation and some transformations, a new MARL algorithm called Shapley Q-learning (SHAQ) is established, the implementation of which is guided by the theoretical results of SBO and MSV. We also discuss the relationship between SHAQ and relevant value factorisation methods. In the experiments, SHAQ exhibits not only superior performances on all tasks but also the interpretability that agrees with the theoretical analysis. The implementation of this paper is on https://github.com/hsvgbkhgbv/shapley-q-learning.
translated by 谷歌翻译
协调图是一种有前途的模型代理协作在多智能体增强学习中的合作方法。它将一个大的多代理系统分解为代表底层协调依赖性的重叠组套件。此范例中的一个危急挑战是计算基于图形的值分子的最大值动作的复杂性。它指的是分散的约束优化问题(DCOP),其恒定比率近似是NP - 硬问题。为了绕过这一基本硬度,提出了一种新的方法,命名为自组织的多项式协调图(SOP-CG),它使用结构化图表来保证具有足够功能表达的所致DCOP的最优性。我们将图形拓扑扩展为状态依赖性,将图形选择作为假想的代理商,最终从统一的Bellman Optimaly方程中获得端到端的学习范例。在实验中,我们表明我们的方法了解可解释的图形拓扑,诱导有效的协调,并提高各种合作多功能机构任务的性能。
translated by 谷歌翻译
Recently, some challenging tasks in multi-agent systems have been solved by some hierarchical reinforcement learning methods. Inspired by the intra-level and inter-level coordination in the human nervous system, we propose a novel value decomposition framework HAVEN based on hierarchical reinforcement learning for fully cooperative multi-agent problems. To address the instability arising from the concurrent optimization of policies between various levels and agents, we introduce the dual coordination mechanism of inter-level and inter-agent strategies by designing reward functions in a two-level hierarchy. HAVEN does not require domain knowledge and pre-training, and can be applied to any value decomposition variant. Our method achieves desirable results on different decentralized partially observable Markov decision process domains and outperforms other popular multi-agent hierarchical reinforcement learning algorithms.
translated by 谷歌翻译
在过去的十年中,多智能经纪人强化学习(Marl)已经有了重大进展,但仍存在许多挑战,例如高样本复杂性和慢趋同稳定的政策,在广泛的部署之前需要克服,这是可能的。然而,在实践中,许多现实世界的环境已经部署了用于生成策略的次优或启发式方法。一个有趣的问题是如何最好地使用这些方法作为顾问,以帮助改善多代理领域的加强学习。在本文中,我们提供了一个原则的框架,用于将动作建议纳入多代理设置中的在线次优顾问。我们描述了在非传记通用随机游戏环境中提供多种智能强化代理(海军上将)的问题,并提出了两种新的基于Q学习的算法:海军上将决策(海军DM)和海军上将 - 顾问评估(Admiral-AE) ,这使我们能够通过适当地纳入顾问(Admiral-DM)的建议来改善学习,并评估顾问(Admiral-AE)的有效性。我们从理论上分析了算法,并在一般加上随机游戏中提供了关于他们学习的定点保证。此外,广泛的实验说明了这些算法:可以在各种环境中使用,具有对其他相关基线的有利相比的性能,可以扩展到大状态行动空间,并且对来自顾问的不良建议具有稳健性。
translated by 谷歌翻译
Cooperative multi-agent reinforcement learning (MARL) has made prominent progress in recent years. For training efficiency and scalability, most of the MARL algorithms make all agents share the same policy or value network. However, in many complex multi-agent tasks, different agents are expected to possess specific abilities to handle different subtasks. In those scenarios, sharing parameters indiscriminately may lead to similar behavior across all agents, which will limit the exploration efficiency and degrade the final performance. To balance the training complexity and the diversity of agent behavior, we propose a novel framework to learn dynamic subtask assignment (LDSA) in cooperative MARL. Specifically, we first introduce a subtask encoder to construct a vector representation for each subtask according to its identity. To reasonably assign agents to different subtasks, we propose an ability-based subtask selection strategy, which can dynamically group agents with similar abilities into the same subtask. In this way, agents dealing with the same subtask share their learning of specific abilities and different subtasks correspond to different specific abilities. We further introduce two regularizers to increase the representation difference between subtasks and stabilize the training by discouraging agents from frequently changing subtasks, respectively. Empirical results show that LDSA learns reasonable and effective subtask assignment for better collaboration and significantly improves the learning performance on the challenging StarCraft II micromanagement benchmark and Google Research Football.
translated by 谷歌翻译
将深度强化学习(DRL)扩展到多代理领域的研究已经解决了许多复杂的问题,并取得了重大成就。但是,几乎所有这些研究都只关注离散或连续的动作空间,而且很少有作品曾经使用过多代理的深度强化学习来实现现实世界中的环境问题,这些问题主要具有混合动作空间。因此,在本文中,我们提出了两种算法:深层混合软性角色批评(MAHSAC)和多代理混合杂种深层确定性政策梯度(MAHDDPG)来填补这一空白。这两种算法遵循集中式培训和分散执行(CTDE)范式,并可以解决混合动作空间问题。我们的经验在多代理粒子环境上运行,这是一个简单的多代理粒子世界,以及一些基本的模拟物理。实验结果表明,这些算法具有良好的性能。
translated by 谷歌翻译
分布式多智能经纪增强学习(Marl)算法最近引起了兴趣激增,主要是由于深神经网络(DNN)的最新进步。由于利用固定奖励模型来学习基础值函数,传统的基于模型(MB)或无模型(MF)RL算法不可直接适用于MARL问题。虽然涉及单一代理时,基于DNN的解决方案完全良好地表现出,但是这种方法无法完全推广到MARL问题的复杂性。换句话说,尽管最近的基于DNN的DNN用于多种子体环境的方法取得了卓越的性能,但它们仍然容易出现过度,对参数选择的高敏感性,以及样本低效率。本文提出了多代理自适应Kalman时间差(MAK-TD)框架及其继任者表示的基于代表的变体,称为MAK-SR。直观地说,主要目标是利用卡尔曼滤波(KF)的独特特征,如不确定性建模和在线二阶学习。提议的MAK-TD / SR框架考虑了与高维多算法环境相关联的动作空间的连续性,并利用卡尔曼时间差(KTD)来解决参数不确定性。通过利用KTD框架,SR学习过程被建模到过滤问题,其中径向基函数(RBF)估计器用于将连续空间编码为特征向量。另一方面,对于学习本地化奖励功能,我们求助于多种模型自适应估计(MMAE),处理缺乏关于观察噪声协方差和观察映射功能的先前知识。拟议的MAK-TD / SR框架通过多个实验进行评估,该实验通过Openai Gym Marl基准实施。
translated by 谷歌翻译
深度强化学习(DRL)和深度多机构的强化学习(MARL)在包括游戏AI,自动驾驶汽车,机器人技术等各种领域取得了巨大的成功。但是,众所周知,DRL和Deep MARL代理的样本效率低下,即使对于相对简单的问题设置,通常也需要数百万个相互作用,从而阻止了在实地场景中的广泛应用和部署。背后的一个瓶颈挑战是众所周知的探索问题,即如何有效地探索环境和收集信息丰富的经验,从而使政策学习受益于最佳研究。在稀疏的奖励,吵闹的干扰,长距离和非平稳的共同学习者的复杂环境中,这个问题变得更加具有挑战性。在本文中,我们对单格和多代理RL的现有勘探方法进行了全面的调查。我们通过确定有效探索的几个关键挑战开始调查。除了上述两个主要分支外,我们还包括其他具有不同思想和技术的著名探索方法。除了算法分析外,我们还对一组常用基准的DRL进行了全面和统一的经验比较。根据我们的算法和实证研究,我们终于总结了DRL和Deep Marl中探索的公开问题,并指出了一些未来的方向。
translated by 谷歌翻译
在复杂的协调问题中,深层合作多智能经纪增强学习(Marl)的高效探索仍然依然存在挑战。在本文中,我们介绍了一种具有奇妙驱动的探索的新型情节多功能钢筋学习,称为EMC。我们利用对流行分解的MARL算法的洞察力“诱导的”个体Q值,即用于本地执行的单个实用程序功能,是本地动作观察历史的嵌入,并且可以捕获因奖励而捕获代理之间的相互作用在集中培训期间的反向化。因此,我们使用单独的Q值的预测误差作为协调勘探的内在奖励,利用集肠内存来利用探索的信息经验来提高政策培训。随着代理商的个人Q值函数的动态捕获了国家的新颖性和其他代理人的影响,我们的内在奖励可以促使对新或有前途的国家的协调探索。我们通过教学实例说明了我们的方法的优势,并展示了在星际争霸II微互动基准中挑战任务的最先进的MARL基础上的其显着优势。
translated by 谷歌翻译
在本文中,我们认为合作的多代理强化学习(MARL)具有稀疏的奖励。为了解决这个问题,我们提出了一种名为Maser:MARL的新方法,并具有从经验重播缓冲区产生的子目标。在广泛使用的集中式培训的假设下,通过分散执行和对MARL的Q值分解的一致性,Maser通过考虑单个Q值和总Q值来自动为多个代理人生成适当的子目标。然后,Maser根据与Q学习相关的可行表示为每个代理设计个人固有奖励,以便代理人达到其子目标,同时最大化联合行动值。数值结果表明,与其他最先进的MARL算法相比,Maser的表现明显优于Starcraft II微管理基准。
translated by 谷歌翻译
Recently, model-based agents have achieved better performance than model-free ones using the same computational budget and training time in single-agent environments. However, due to the complexity of multi-agent systems, it is tough to learn the model of the environment. The significant compounding error may hinder the learning process when model-based methods are applied to multi-agent tasks. This paper proposes an implicit model-based multi-agent reinforcement learning method based on value decomposition methods. Under this method, agents can interact with the learned virtual environment and evaluate the current state value according to imagined future states in the latent space, making agents have the foresight. Our approach can be applied to any multi-agent value decomposition method. The experimental results show that our method improves the sample efficiency in different partially observable Markov decision process domains.
translated by 谷歌翻译
多代理深入的强化学习已应用于解决各种离散或连续动作空间的各种复杂问题,并取得了巨大的成功。但是,大多数实际环境不能仅通过离散的动作空间或连续的动作空间来描述。而且很少有作品曾经利用深入的加固学习(DRL)来解决混合动作空间的多代理问题。因此,我们提出了一种新颖的算法:深层混合软性角色 - 批评(MAHSAC)来填补这一空白。该算法遵循集中式训练但分散执行(CTDE)范式,并扩展软actor-Critic算法(SAC),以根据最大熵在多机构环境中处理混合动作空间问题。我们的经验在一个简单的多代理粒子世界上运行,具有连续的观察和离散的动作空间以及一些基本的模拟物理。实验结果表明,MAHSAC在训练速度,稳定性和抗干扰能力方面具有良好的性能。同时,它在合作场景和竞争性场景中胜过现有的独立深层学习方法。
translated by 谷歌翻译
Multi-agent settings remain a fundamental challenge in the reinforcement learning (RL) domain due to the partial observability and the lack of accurate real-time interactions across agents. In this paper, we propose a new method based on local communication learning to tackle the multi-agent RL (MARL) challenge within a large number of agents coexisting. First, we design a new communication protocol that exploits the ability of depthwise convolution to efficiently extract local relations and learn local communication between neighboring agents. To facilitate multi-agent coordination, we explicitly learn the effect of joint actions by taking the policies of neighboring agents as inputs. Second, we introduce the mean-field approximation into our method to reduce the scale of agent interactions. To more effectively coordinate behaviors of neighboring agents, we enhance the mean-field approximation by a supervised policy rectification network (PRN) for rectifying real-time agent interactions and by a learnable compensation term for correcting the approximation bias. The proposed method enables efficient coordination as well as outperforms several baseline approaches on the adaptive traffic signal control (ATSC) task and the StarCraft II multi-agent challenge (SMAC).
translated by 谷歌翻译
由于共同国家行动空间相对于代理人的数量,多代理强化学习(MARL)中的政策学习(MARL)是具有挑战性的。为了实现更高的可伸缩性,通过分解执行(CTDE)的集中式培训范式被MARL中的分解结构广泛采用。但是,我们观察到,即使在简单的矩阵游戏中,合作MARL中现有的CTDE算法也无法实现最佳性。为了理解这种现象,我们引入了一个具有政策分解(GPF-MAC)的广义多代理参与者批评的框架,该框架的特征是对分解的联合政策的学习,即,每个代理人的政策仅取决于其自己的观察行动历史。我们表明,最受欢迎的CTDE MARL算法是GPF-MAC的特殊实例,可能会陷入次优的联合政策中。为了解决这个问题,我们提出了一个新颖的转型框架,该框架将多代理的MDP重新制定为具有连续结构的特殊“单位代理” MDP,并且可以允许使用现成的单机械加固学习(SARL)算法来有效地学习相应的多代理任务。这种转换保留了SARL算法的最佳保证,以合作MARL。为了实例化此转换框架,我们提出了一个转换的PPO,称为T-PPO,该PPO可以在有限的多代理MDP中进行理论上执行最佳的策略学习,并在一系列合作的多代理任务上显示出明显的超出性能。
translated by 谷歌翻译
几乎所有的多代理强化学习算法没有交流,都遵循分散执行的集中培训原则。在集中培训期间,代理可以以相同的信号为指导,例如全球国家。但是,在分散执行期间,代理缺乏共享信号。受到观点不变性和对比学习的启发,我们在本文中提出了共识学习,以学习合作的多代理增强学习。尽管基于局部观察结果,但不同的代理可以在离散空间中推断出相同的共识。在分散执行期间,我们将推断的共识作为对代理网络的明确输入提供了,从而发展了他们的合作精神。我们提出的方法可以扩展到具有小模型更改的各种多代理增强学习算法。此外,我们执行一些完全合作的任务,并获得令人信服的结果。
translated by 谷歌翻译
在本文中,我们提出了一个名为“星际争霸多代理挑战”的新颖基准,代理商学习执行多阶段任务并使用没有精确奖励功能的环境因素。以前的挑战(SMAC)被认为是多名强化学习的标准基准,主要涉及确保所有代理人仅通过具有明显的奖励功能的精细操纵而合作消除接近对手。另一方面,这一挑战对MARL算法的探索能力有效地学习隐式多阶段任务和环境因素以及微控制感兴趣。这项研究涵盖了进攻和防御性场景。在进攻情况下,代理商必须学会先寻找对手,然后消除他们。防御性场景要求代理使用地形特征。例如,代理需要将自己定位在保护结构后面,以使敌人更难攻击。我们研究了SMAC+下的MARL算法,并观察到最近的方法在与以前的挑战类似,但在进攻情况下表现不佳。此外,我们观察到,增强的探索方法对性能有积极影响,但无法完全解决所有情况。这项研究提出了未来研究的新方向。
translated by 谷歌翻译