The emergence of low-cost, small form factor and light-weight solid-state LiDAR sensors have brought new opportunities for autonomous unmanned aerial vehicles (UAVs) by advancing navigation safety and computation efficiency. Yet the successful developments of LiDAR-based UAVs must rely on extensive simulations. Existing simulators can hardly perform simulations of real-world environments due to the requirements of dense mesh maps that are difficult to obtain. In this paper, we develop a point-realistic simulator of real-world scenes for LiDAR-based UAVs. The key idea is the underlying point rendering method, where we construct a depth image directly from the point cloud map and interpolate it to obtain realistic LiDAR point measurements. Our developed simulator is able to run on a light-weight computing platform and supports the simulation of LiDARs with different resolution and scanning patterns, dynamic obstacles, and multi-UAV systems. Developed in the ROS framework, the simulator can easily communicate with other key modules of an autonomous robot, such as perception, state estimation, planning, and control. Finally, the simulator provides 10 high-resolution point cloud maps of various real-world environments, including forests of different densities, historic building, office, parking garage, and various complex indoor environments. These realistic maps provide diverse testing scenarios for an autonomous UAV. Evaluation results show that the developed simulator achieves superior performance in terms of time and memory consumption against Gazebo and that the simulated UAV flights highly match the actual one in real-world environments. We believe such a point-realistic and light-weight simulator is crucial to bridge the gap between UAV simulation and experiments and will significantly facilitate the research of LiDAR-based autonomous UAVs in the future.
translated by 谷歌翻译
目前,移动机器人正在迅速发展,并在工业中寻找许多应用。然而,仍然存在与其实际使用相关的一些问题,例如对昂贵的硬件及其高功耗水平的需要。在本研究中,我们提出了一种导航系统,该导航系统可在具有RGB-D相机的低端计算机上操作,以及用于操作集成自动驱动系统的移动机器人平台。建议的系统不需要Lidars或GPU。我们的原始深度图像接地分割方法提取用于低体移动机器人的安全驾驶的遍历图。它旨在保证具有集成的SLAM,全局路径规划和运动规划的低成本现成单板计算机上的实时性能。我们使用Traversability Map应用基于规则的基于学习的导航策略。同时运行传感器数据处理和其他自主驾驶功能,我们的导航策略以18Hz的刷新率为控制命令而迅速执行,而其他系统则具有较慢的刷新率。我们的方法在有限的计算资源中优于当前最先进的导航方法,如3D模拟测试所示。此外,我们通过在室内环境中成功的自动驾驶来展示移动机器人系统的适用性。我们的整个作品包括硬件和软件在开源许可(https://github.com/shinkansan/2019-ugrp-doom)下发布。我们的详细视频是https://youtu.be/mf3iufuhppm提供的。
translated by 谷歌翻译
本文提出了一种新颖的方法,用于在具有复杂拓扑结构的地下领域的搜索和救援行动中自动合作。作为CTU-Cras-Norlab团队的一部分,拟议的系统在DARPA SubT决赛的虚拟轨道中排名第二。与专门为虚拟轨道开发的获奖解决方案相反,该建议的解决方案也被证明是在现实世界竞争极为严峻和狭窄的环境中飞行的机上实体无人机的强大系统。提出的方法可以使无缝模拟转移的无人机团队完全自主和分散的部署,并证明了其优于不同环境可飞行空间的移动UGV团队的优势。该论文的主要贡献存在于映射和导航管道中。映射方法采用新颖的地图表示形式 - 用于有效的风险意识长距离计划,面向覆盖范围和压缩的拓扑范围的LTVMAP领域,以允许在低频道通信下进行多机器人合作。这些表示形式与新的方法一起在导航中使用,以在一般的3D环境中可见性受限的知情搜索,而对环境结构没有任何假设,同时将深度探索与传感器覆盖的剥削保持平衡。所提出的解决方案还包括一条视觉感知管道,用于在没有专用GPU的情况下在5 Hz处进行四个RGB流中感兴趣的对象的板上检测和定位。除了参与DARPA SubT外,在定性和定量评估的各种环境中,在不同的环境中进行了广泛的实验验证,UAV系统的性能得到了支持。
translated by 谷歌翻译
传感器仿真已成为一种有前途且强大的技术,可以找到许多现实世界机器人任务(例如本地化和姿势跟踪)的解决方案。但是,常用的模拟器具有高硬件要求,因此主要用于高端计算机。在本文中,我们提出了一种方法,可以直接在使用三角形网格作为环境图的移动机器人的嵌入式硬件上模拟范围传感器。这个名为Rmagine的库允许机器人直接通过射线缩放模拟传感器数据为任意范围传感器。由于机器人通常只有有限的计算资源,因此Rmagine的目的是灵活且轻巧,同时甚至可以很好地扩展到大型环境图。它通过将统一的API放在硬件制造商提供的特定专有库上,将统一的API放置在诸如Nvidia Jetson之类的多个平台上,例如Nvidia Jetson。这项工作旨在根据范围数据的模拟来支持机器人应用程序的未来开发,这些数据以前在移动系统上的合理时间内无法计算。
translated by 谷歌翻译
本文介绍了在线本地化和彩色网格重建(OLCMR)ROS感知体系结构,用于地面探索机器人,旨在在具有挑战性的未知环境中执行强大的同时定位和映射(SLAM),并实时提供相关的彩色3D网格表示。它旨在被远程人类操作员使用在任务或之后或之后轻松地可视化映射的环境,或作为在勘探机器人技术领域进行进一步研究的开发基础。该体系结构主要由精心挑选的基于激光雷达的SLAM算法的开源ROS实现以及使用点云和RGB摄像机图像投影到3D空间中的彩色表面重建过程。在较新的大学手持式LIDAR-VISION参考数据集上评估了整体表演,并在分别在城市和乡村户外环境中分别在代表性的车轮机器人上收集的两个实验轨迹。索引术语:现场机器人,映射,猛击,彩色表面重建
translated by 谷歌翻译
本文介绍了使用腿收割机进行精密收集任务的集成系统。我们的收割机在狭窄的GPS拒绝了森林环境中的自主导航和树抓取了一项挑战性的任务。提出了映射,本地化,规划和控制的策略,并集成到完全自主系统中。任务从使用定制的传感器模块开始使用人员映射感兴趣区域。随后,人类专家选择树木进行收获。然后将传感器模块安装在机器上并用于给定地图内的本地化。规划算法在单路径规划问题中搜索一个方法姿势和路径。我们设计了一个路径,后面的控制器利用腿的收割机的谈判粗糙地形的能力。在达接近姿势时,机器用通用夹具抓住一棵树。此过程重复操作员选择的所有树。我们的系统已经在与树干和自然森林中的测试领域进行了测试。据我们所知,这是第一次在现实环境中运行的全尺寸液压机上显示了这一自主权。
translated by 谷歌翻译
LIDAR传感器提供有关周围场景的丰富3D信息,并且对于自动驾驶汽车的任务(例如语义细分,对象检测和跟踪)变得越来越重要。模拟激光雷达传感器的能力将加速自动驾驶汽车的测试,验证和部署,同时降低成本并消除现实情况下的测试风险。为了解决以高保真度模拟激光雷达数据的问题,我们提出了一条管道,该管道利用移动映射系统获得的现实世界点云。基于点的几何表示,更具体地说,已经证明了它们能够在非常大点云中准确对基础表面进行建模的能力。我们引入了一种自适应夹层生成方法,该方法可以准确地对基础3D几何形状进行建模,尤其是对于薄结构。我们还通过在GPU上铸造Ray铸造的同时,在有效处理大点云的同时,我们还开发了更快的时间激光雷达模拟。我们在现实世界中测试了激光雷达的模拟,与基本的碎片和网格划分技术相比,表现出定性和定量结果,证明了我们的建模技术的优势。
translated by 谷歌翻译
本文通过讨论参加了为期三年的SubT竞赛的六支球队的不同大满贯策略和成果,报道了地下大满贯的现状。特别是,本文有四个主要目标。首先,我们审查团队采用的算法,架构和系统;特别重点是以激光雷达以激光雷达为中心的SLAM解决方案(几乎所有竞争中所有团队的首选方法),异质的多机器人操作(包括空中机器人和地面机器人)和现实世界的地下操作(从存在需要处理严格的计算约束的晦涩之处)。我们不会回避讨论不同SubT SLAM系统背后的肮脏细节,这些系统通常会从技术论文中省略。其次,我们通过强调当前的SLAM系统的可能性以及我们认为与一些良好的系统工程有关的范围来讨论该领域的成熟度。第三,我们概述了我们认为是基本的开放问题,这些问题可能需要进一步的研究才能突破。最后,我们提供了在SubT挑战和相关工作期间生产的开源SLAM实现和数据集的列表,并构成了研究人员和从业人员的有用资源。
translated by 谷歌翻译
同时定位和映射(SLAM)对于自主机器人(例如自动驾驶汽车,自动无人机),3D映射系统和AR/VR应用至关重要。这项工作提出了一个新颖的LIDAR惯性 - 视觉融合框架,称为R $^3 $ LIVE ++,以实现强大而准确的状态估计,同时可以随时重建光线体图。 R $^3 $ LIVE ++由LIDAR惯性探针(LIO)和视觉惯性探测器(VIO)组成,均为实时运行。 LIO子系统利用从激光雷达的测量值重建几何结构(即3D点的位置),而VIO子系统同时从输入图像中同时恢复了几何结构的辐射信息。 r $^3 $ live ++是基于r $^3 $ live开发的,并通过考虑相机光度校准(例如,非线性响应功能和镜头渐滴)和相机的在线估计,进一步提高了本地化和映射的准确性和映射接触时间。我们对公共和私人数据集进行了更广泛的实验,以将我们提出的系统与其他最先进的SLAM系统进行比较。定量和定性结果表明,我们所提出的系统在准确性和鲁棒性方面对其他系统具有显着改善。此外,为了证明我们的工作的可扩展性,{我们基于重建的辐射图开发了多个应用程序,例如高动态范围(HDR)成像,虚拟环境探索和3D视频游戏。}最后,分享我们的发现和我们的发现和为社区做出贡献,我们在GitHub上公开提供代码,硬件设计和数据集:github.com/hku-mars/r3live
translated by 谷歌翻译
通过移动激光扫描和图像构建有色点的云是测量和映射的基本工作。它也是为智能城市建造数字双胞胎的重要先决条件。但是,现有的公共数据集要么是相对较小的规模,要么缺乏准确的几何和彩色地面真理。本文记录了一个名为Polyu-BPComa的多功能数据集,该数据集可独特地定位于移动着色映射。该数据集在背包平台上包含3D激光雷达,球形成像,GNSS和IMU的资源。颜色检查器板在每个调查区域粘贴,因为目标和地面真相数据是由先进的陆地激光扫描仪(TLS)收集的。 3D几何信息和颜色信息可以分别在背包系统和TLS产生的有色点云中恢复。因此,我们提供了一个机会,可以同时为移动多感官系统对映射和着色精度进行基准测试。该数据集的尺寸约为800 GB,涵盖室内和室外环境。数据集和开发套件可在https://github.com/chenpengxin/polyu-bpcoma.git上找到。
translated by 谷歌翻译
本文介绍了Cerberus机器人系统系统,该系统赢得了DARPA Subterranean挑战最终活动。出席机器人自主权。由于其几何复杂性,降解的感知条件以及缺乏GPS支持,严峻的导航条件和拒绝通信,地下设置使自动操作变得特别要求。为了应对这一挑战,我们开发了Cerberus系统,该系统利用了腿部和飞行机器人的协同作用,再加上可靠的控制,尤其是为了克服危险的地形,多模式和多机器人感知,以在传感器退化,以及在传感器退化的条件下进行映射以及映射通过统一的探索路径计划和本地运动计划,反映机器人特定限制的弹性自主权。 Cerberus基于其探索各种地下环境及其高级指挥和控制的能力,表现出有效的探索,对感兴趣的对象的可靠检测以及准确的映射。在本文中,我们报告了DARPA地下挑战赛的初步奔跑和最终奖项的结果,并讨论了为社区带来利益的教训所面临的亮点和挑战。
translated by 谷歌翻译
旋转激光雷达数据对于3D感知任务普遍存在,但尚未研究其圆柱形图像形式。传统方法将扫描视为点云,并且它们依赖于昂贵的欧几里德3D最近邻居搜索数据关联或依赖于投影范围图像以进行进一步处理。我们重新审视LIDAR扫描形成,并呈现来自原始扫描数据的圆柱形范围图像表示,配备有效校准的球形投射模型。通过我们的配方,我们1)收集一个LIDAR数据的大型数据集,包括室内和室外序列,伴随着伪接地的真理姿势;2)评估综合性和现实世界转型的序列上的投影和常规登记方法;3)将最先进的RGB-D算法转移到LIDAR,其运行高达180 Hz的注册和150 Hz以进行密集的重建。数据集和工具将被释放。
translated by 谷歌翻译
微型航空车(MAV)具有很高的信息收集任务的潜力,以支持搜索和救援方案中的情况意识。在这种情况下,手动控制MAV需要经验丰富的飞行员,并且容易出错,尤其是在真正紧急情况的压力下。灾难情景的条件对于自动MAV系统也充满挑战。通常不知道环境,GNSS可能并不总是可用。我们介绍了一个不依赖全球定位系统的未知环境中自动MAV航班的系统。该方法在多个搜索和救援方案中进行评估,即使在室内和室外区域之间过渡时,也可以进行安全的自动飞行。
translated by 谷歌翻译
最近的研究通过使用直接非线性模型预测控制(NMPC),使固定翼无人驾驶飞行器(无人机)能够在受约束空间中操纵。然而,这种方法仅限于先验的已知地图和地面真理状态测量。在本文中,我们介绍了一种直接的NMPC方法,它利用Nanomap,一种光重点云映射框架,用于使用车载立体视觉产生自由的轨迹。我们首先探讨了我们在模拟中的方法,并证明我们的算法足以使城市环境中的视觉导航。然后,我们使用42英寸的固定翼UAV在硬件中展示我们的方法,并显示我们的运动规划算法能够使用一组简约的目标点围绕建筑物导航。我们还显示存储点云历史,对于导航这些类型的约束环境非常重要。
translated by 谷歌翻译
本文提出了一种有效的概率自适应体素映射方法,用于激光雷达的探光法。该地图是体素的集合;每个都包含一个平面(或边缘)功能,该特征可以实现环境的概率表示以及新的LIDAR扫描的准确配置。我们进一步分析了对粗到1的体素映射的需求,然后使用哈希表和动手组织的新型体素图来有效地构建和更新地图。我们将提出的体素图应用于迭代的扩展卡尔曼滤波器,并为姿势估计构建最大后验概率问题。与其他最先进的方法相比,开放Kitti数据集的实验显示了我们方法的高精度和效率。在具有非重复扫描激光雷达的非结构化环境上进行的室外实验进一步验证了我们的映射方法对不同环境和LIDAR扫描模式的适应性。我们的代码和数据集在GitHub上开源
translated by 谷歌翻译
本文在移动平台上介绍了四摩托车的自动起飞和着陆系统。设计的系统解决了三个具有挑战性的问题:快速姿势估计,受限的外部定位和有效避免障碍物。具体而言,首先,我们基于Aruco标记设计了着陆识别和定位系统,以帮助四极管快速计算相对姿势。其次,我们利用基于梯度的本地运动计划者快速生成无冲突的参考轨迹;第三,我们构建了一台自主状态机器,使四极管能够完全自治完成其起飞,跟踪和着陆任务;最后,我们在模拟,现实世界和室外环境中进行实验,以验证系统的有效性并证明其潜力。
translated by 谷歌翻译
We propose a real-time method for odometry and mapping using range measurements from a 2-axis lidar moving in 6-DOF. The problem is hard because the range measurements are received at different times, and errors in motion estimation can cause mis-registration of the resulting point cloud. To date, coherent 3D maps can be built by off-line batch methods, often using loop closure to correct for drift over time. Our method achieves both low-drift and low-computational complexity without the need for high accuracy ranging or inertial measurements.The key idea in obtaining this level of performance is the division of the complex problem of simultaneous localization and mapping, which seeks to optimize a large number of variables simultaneously, by two algorithms. One algorithm performs odometry at a high frequency but low fidelity to estimate velocity of the lidar. Another algorithm runs at a frequency of an order of magnitude lower for fine matching and registration of the point cloud. Combination of the two algorithms allows the method to map in real-time. The method has been evaluated by a large set of experiments as well as on the KITTI odometry benchmark. The results indicate that the method can achieve accuracy at the level of state of the art offline batch methods.
translated by 谷歌翻译
我们提出了一种生成,预测和使用时空占用网格图(SOGM)的方法,该方法嵌入了真实动态场景的未来语义信息。我们提出了一个自动标记的过程,该过程从嘈杂的真实导航数据中创建SOGM。我们使用3D-2D馈电体系结构,经过训练,可以预测SOGM的未来时间步骤,并给定3D激光镜框架作为输入。我们的管道完全是自我监督的,从而为真正的机器人提供了终身学习。该网络由一个3D后端组成,该后端提取丰富的特征并实现了激光镜框架的语义分割,以及一个2D前端,可预测SOGM表示中嵌入的未来信息,从而有可能捕获房地产的复杂性和不确定性世界多代理,多未来的互动。我们还设计了一个导航系统,该导航系统在计划中使用这些预测的SOGM在计划中,之后它们已转变为时空风险图(SRMS)。我们验证导航系统在模拟中的能力,在真实的机器人上对其进行验证,在各种情况下对真实数据进行研究SOGM预测,并提供一种新型的室内3D LIDAR数据集,该数据集在我们的实验中收集,其中包括我们的自动注释。
translated by 谷歌翻译
我们提出了通过现实的模拟和现实世界实验来支持可复制研究的多运动无人机控制(UAV)和估计系统。我们提出了一个独特的多帧本地化范式,用于同时使用多个传感器同时估算各种参考框架中的无人机状态。该系统可以在GNSS和GNSS贬低的环境中进行复杂的任务,包括室外室内过渡和执行冗余估计器,以备份不可靠的本地化源。提出了两种反馈控制设计:一个用于精确和激进的操作,另一个用于稳定和平稳的飞行,并进行嘈杂的状态估计。拟议的控制和估计管道是在3D中使用Euler/Tait-Bryan角度表示的,而无需使用Euler/Tait-Bryan角度表示。取而代之的是,我们依靠旋转矩阵和一个新颖的基于标题的惯例来代表标准多电流直升机3D中的一个自由旋转自由度。我们提供了积极维护且有据可查的开源实现,包括对无人机,传感器和本地化系统的现实模拟。拟议的系统是多年应用系统,空中群,空中操纵,运动计划和遥感的多年研究产物。我们所有的结果都得到了现实世界中的部署的支持,该系统部署将系统塑造成此处介绍的表单。此外,该系统是在我们团队从布拉格的CTU参与期间使用的,该系统在享有声望的MBZIRC 2017和2020 Robotics竞赛中,还参加了DARPA SubT挑战赛。每次,我们的团队都能在世界各地最好的竞争对手中获得最高位置。在每种情况下,挑战都促使团队改善系统,并在紧迫的期限内获得大量高质量的体验。
translated by 谷歌翻译
The field of autonomous mobile robots has undergone dramatic advancements over the past decades. Despite achieving important milestones, several challenges are yet to be addressed. Aggregating the achievements of the robotic community as survey papers is vital to keep the track of current state-of-the-art and the challenges that must be tackled in the future. This paper tries to provide a comprehensive review of autonomous mobile robots covering topics such as sensor types, mobile robot platforms, simulation tools, path planning and following, sensor fusion methods, obstacle avoidance, and SLAM. The urge to present a survey paper is twofold. First, autonomous navigation field evolves fast so writing survey papers regularly is crucial to keep the research community well-aware of the current status of this field. Second, deep learning methods have revolutionized many fields including autonomous navigation. Therefore, it is necessary to give an appropriate treatment of the role of deep learning in autonomous navigation as well which is covered in this paper. Future works and research gaps will also be discussed.
translated by 谷歌翻译