In this invited paper, my overview material on the same topic as presented in the plenary overview session of APSIPA-2011 and the tutorial material presented in the same conference [1] are expanded and updated to include more recent developments in deep learning. The previous and the updated materials cover both theory and applications, and analyze its future directions. The goal of this tutorial survey is to introduce the emerging area of deep learning or hierarchical learning to the APSIPA community. Deep learning refers to a class of machine learning techniques, developed largely since 2006, where many stages of non-linear information processing in hierarchical architectures are exploited for pattern classification and for feature learning. In the more recent literature, it is also connected to representation learning, which involves a hierarchy of features or concepts where higher-level concepts are defined from lower-level ones and where the same lower-level concepts help to define higher-level ones. In this tutorial survey, a brief history of deep learning research is discussed first. Then, a classificatory scheme is developed to analyze and summarize major work reported in the recent deep learning literature. Using this scheme, I provide a taxonomy-oriented survey on the existing deep architectures and algorithms in the literature, and categorize them into three classes: generative, discriminative, and hybrid. Three representative deep architectures-deep autoencoders, deep stacking networks with their generalization to the temporal domain (recurrent networks), and deep neural networks (pretrained with deep belief networks)-one in each of the three classes, are presented in more detail. Next, selected applications of deep learning are reviewed in broad areas of signal and information processing including audio/speech, image/vision, multimodality, language modeling, natural language processing, and information retrieval. Finally, future directions of deep learning are discussed and analyzed.
translated by 谷歌翻译
机器学习算法的成功通常取决于数据表示,我们假设这是因为不同的表示可以或多或少地隐藏数据背后变异的不同解释因素。虽然可以使用特定领域知识来帮助设计表示,但也可以使用通用先验学习,并且对AI的追求正在激励设计实现这些先验的更强大的表示 - 学习算法。本文回顾了无监督特征学习和深度学习领域的最新研究成果,涵盖了概率模型,自动编码器,流形学习和深度网络的进步。这激发了关于学习良好表征,计算表示(即推理)以及表示学习,密度估计和流形学习之间的几何联系的适当目标的长期未回答的问题。
translated by 谷歌翻译
Automatic Speech Recognition (ASR) has historically been a driving force behind many machine learning (ML) techniques, including the ubiquitously used hidden Markov model, discriminative learning, structured sequence learning, Bayesian learning, and adaptive learning. Moreover, ML can and occasionally does use ASR as a large-scale, realistic application to rigorously test the effectiveness of a given technique, and to inspire new problems arising from the inherently sequential and dynamic nature of speech. On the other hand, even though ASR is available commercially for some applications, it is largely an unsolved problem-for almost all applications, the performance of ASR is not on par with human performance. New insight from modern ML methodology shows great promise to advance the state-of-the-art in ASR technology. This overview article provides readers with an overview of modern ML techniques as utilized in the current and as relevant to future ASR research and systems. The intent is to foster further cross-pollination between the ML and ASR communities than has occurred in the past. The article is organized according to the major ML paradigms that are either popular already or have potential for making significant contributions to ASR technology. The paradigms presented and elaborated in this overview include: generative and discriminative learning; supervised, unsupervised, semi-supervised, and active learning; adaptive and multi-task learning; and Bayesian learning. These learning paradigms are motivated and discussed in the context of ASR technology and applications. We finally present and analyze recent developments of deep learning and learning with sparse representations, focusing on their direct relevance to advancing ASR technology.
translated by 谷歌翻译
The success of machine learning algorithms generally depends on data representation, and we hypothesize that this is because different representations can entangle and hide more or less the different explanatory factors of variation behind the data. Although domain knowledge can be used to help design representations, learning can also be used, and the quest for AI is motivating the design of more powerful representation-learning algorithms. This paper reviews recent work in the area of unsupervised feature learning and deep learning, covering advances in probabilistic models, manifold learning, and deep learning. This motivates longer-term unanswered questions about the appropriate objectives for learning good representations, for computing representations (i.e., inference), and the geometrical connections between representation learning, density estimation and manifold learning.
translated by 谷歌翻译
鉴于最近深度学习的发展激增,本文提供了对音频信号处理的最新深度学习技术的回顾。语音,音乐和环境声音处理被并排考虑,以指出领域之间的相似点和不同点,突出一般方法,问题,关键参考和区域之间相互交流的可能性。回顾了主要特征表示(特别是log-mel光谱和原始波形)和deeplearning模型,包括卷积神经网络,长期短期记忆体系结构的变体,以及更多音频特定的神经网络模型。随后,涵盖了突出的深度学习应用领域,即音频识别(自动语音识别,音乐信息检索,环境声音检测,定位和跟踪)和合成与转换(源分离,音频增强,语音,声音和音乐合成的生成模型)。最后,确定了应用于音频信号处理的深度学习的关键问题和未来问题。
translated by 谷歌翻译
New waves of consumer-centric applications, such as voice search and voice interaction with mobile devices and home entertainment systems, increasingly require automatic speech recognition (ASR) to be robust to the full range of real-world noise and other acoustic distorting conditions. Despite its practical importance, however, the inherent links between and distinctions among the myriad of methods for noise-robust ASR have yet to be carefully studied in order to advance the field further. To this end, it is critical to establish a solid, consistent, and common mathematical foundation for noise-robust ASR, which is lacking at present. This article is intended to fill this gap and to provide a thorough overview of modern noise-robust techniques for ASR developed over the past 30 years. We emphasize methods that are proven to be successful and that are likely to sustain or expand their future applicability. We distill key insights from our comprehensive overview in this field and take a fresh look at a few old problems, which nevertheless are still highly relevant today. Specifically, we have analyzed and categorized a wide range of noise-robust techniques using five different criteria: 1) feature-domain vs. model-domain processing, 2) the use of prior knowledge about the acoustic environment distortion, 3) the use of explicit environment-distortion models, 4) deterministic vs. uncertainty processing, and 5) the use of acoustic models trained jointly with the same feature enhancement or model adaptation process used in the testing stage. With this taxonomy-oriented review, we equip the reader with the insight to choose among techniques and with the awareness of the performance-complexity tradeoffs. The pros and cons of using different noise-robust ASR techniques in practical application scenarios are provided as a guide to interested practitioners. The current challenges and future research directions in this field is also carefully analyzed.
translated by 谷歌翻译
Objective: Most current Electroencephalography (EEG)-based Brain-Computer Interfaces (BCIs) are based on machine learning algorithms. There is a large diversity of classifier types that are used in this field, as described in our 2007 review paper. Now, approximately 10 years after this review publication, many new algorithms have been developed and tested to classify EEG signals in BCIs. The time is therefore ripe for an updated review of EEG classification algorithms for BCIs. Approach: We surveyed the BCI and machine learning literature from 2007 to 2017 to identify the new classification approaches that have been investigated to design BCIs. We synthesize these studies in order to present such algorithms, to report how they were used for BCIs, what were the outcomes, and to identify their pros and cons. Main results: We found that the recently designed classification algorithms for EEG-based BCIs can be divided into four main categories: adaptive classifiers, matrix and tensor classifiers, transfer learning and deep learning, plus a few other miscellaneous classifiers. Among these, adaptive classifiers were demonstrated to be generally superior to static ones, even with unsupervised adaptation. Transfer learning can also prove useful although the benefits of transfer learning remain unpredictable. Riemannian geometry-based methods have reached state-of-the-art performances on multiple BCI problems and deserve to be explored more thoroughly, along with tensor-based methods. Shrinkage linear discriminant analysis and random forests also appear particularly useful for small training samples settings. On the other hand, deep learning methods have not yet shown convincing improvement over state-of-the-art BCI methods. Significance: This paper provides a comprehensive overview of the modern classification algorithms used in EEG-based BCIs, presents the principles of these Review of Classification Algorithms for EEG-based BCI 2 methods and guidelines on when and how to use them. It also identifies a number of challenges to further advance EEG classification in BCI.
translated by 谷歌翻译
We are honored to welcome you to the 2nd International Workshop on Advanced Analyt-ics and Learning on Temporal Data (AALTD), which is held in Riva del Garda, Italy, on September 19th, 2016, co-located with The European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML/PKDD 2016). The aim of this workshop is to bring together researchers and experts in machine learning, data mining, pattern analysis and statistics to share their challenging issues and advance researches on temporal data analysis. Analysis and learning from temporal data cover a wide scope of tasks including learning metrics, learning representations, unsupervised feature extraction, clustering and classification. This volume contains the conference program, an abstract of the invited keynotes and the set of regular papers accepted to be presented at the conference. Each of the submitted papers was reviewed by at least two independent reviewers, leading to the selection of eleven papers accepted for presentation and inclusion into the program and these proceedings. The contributions are given by the alphabetical order, by surname. The keynote given by Marco Cuturi on "Regularized DTW Divergences for Time Se-ries" focuses on the definition of alignment kernels for time series that can later be used at the core of standard machine learning algorithms. The one given by Tony Bagnall on "The Great Time Series Classification Bake Off" presents an important attempt to experimentally compare performance of a wide range of time series classifiers, together with ensemble classifiers that aim at combining existing classifiers to improve classification quality. Accepted papers spanned from innovative ideas on analytic of temporal data, including promising new approaches and covering both practical and theoretical issues. We wish to thank the ECML PKDD council members for giving us the opportunity to hold the AALTD workshop within the framework of the ECML/PKDD Conference and the members of the local organizing committee for their support. The organizers of the AALTD conference gratefully thank the financial support of the Université de Rennes 2, MODES and Universidade da Coruña. Last but not least, we wish to thank the contributing authors for the high quality works and all members of the Reviewing Committee for their invaluable assistance in the iii selection process. All of them have significantly contributed to the success of AALTD 2106. We sincerely hope that the workshop participants have a great and fruitful time at the conference.
translated by 谷歌翻译
We are honored to welcome you to the 2nd International Workshop on Advanced Analyt-ics and Learning on Temporal Data (AALTD), which is held in Riva del Garda, Italy, on September 19th, 2016, co-located with The European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML/PKDD 2016). The aim of this workshop is to bring together researchers and experts in machine learning, data mining, pattern analysis and statistics to share their challenging issues and advance researches on temporal data analysis. Analysis and learning from temporal data cover a wide scope of tasks including learning metrics, learning representations, unsupervised feature extraction, clustering and classification. This volume contains the conference program, an abstract of the invited keynotes and the set of regular papers accepted to be presented at the conference. Each of the submitted papers was reviewed by at least two independent reviewers, leading to the selection of eleven papers accepted for presentation and inclusion into the program and these proceedings. The contributions are given by the alphabetical order, by surname. The keynote given by Marco Cuturi on "Regularized DTW Divergences for Time Se-ries" focuses on the definition of alignment kernels for time series that can later be used at the core of standard machine learning algorithms. The one given by Tony Bagnall on "The Great Time Series Classification Bake Off" presents an important attempt to experimentally compare performance of a wide range of time series classifiers, together with ensemble classifiers that aim at combining existing classifiers to improve classification quality. Accepted papers spanned from innovative ideas on analytic of temporal data, including promising new approaches and covering both practical and theoretical issues. We wish to thank the ECML PKDD council members for giving us the opportunity to hold the AALTD workshop within the framework of the ECML/PKDD Conference and the members of the local organizing committee for their support. The organizers of the AALTD conference gratefully thank the financial support of the Université de Rennes 2, MODES and Universidade da Coruña. Last but not least, we wish to thank the contributing authors for the high quality works and all members of the Reviewing Committee for their invaluable assistance in the iii selection process. All of them have significantly contributed to the success of AALTD 2106. We sincerely hope that the workshop participants have a great and fruitful time at the conference.
translated by 谷歌翻译
到目前为止,深度学习和深层体系结构正在成为许多实际应用中最好的机器学习方法,例如降低数据的维度,图像分类,语音识别或对象分割。事实上,许多领先的技术公司,如谷歌,微软或IBM,正在研究和使用他们系统中的深层架构来取代其他传统模型。因此,提高这些模型的性能可以在机器学习领域产生强烈的影响。然而,深度学习是一个快速发展的研究领域,在过去几年中发现了许多核心方法和范例。本文将首先作为深度学习的简短总结,试图包括本研究领域中所有最重要的思想。基于这一知识,我们提出并进行了一些实验,以研究基于自动编程(ADATE)改进深度学习的可能性。尽管我们的实验确实产生了良好的结果,但由于时间有限以及当前ADATE版本的局限性,我们还有更多的可能性无法尝试。我希望这篇论文可以促进关于这个主题的未来工作,特别是在ADATE的下一个版本中。本文还简要分析了ADATEsystem的功能,这对于想要了解其功能的其他研究人员非常有用。
translated by 谷歌翻译
今天的电信网络已成为大量广泛异构数据的来源。该信息可以从网络交通轨迹,网络警报,信号质量指示符,用户行为数据等中检索。需要高级数学工具从这些数据中提取有意义的信息,并从网络生成的数据中做出与网络的正常运行有关的决策。在这些数学工具中,机器学习(ML)被认为是执行网络数据分析和实现自动网络自配置和故障管理的最具前景的方法之一。 ML技术在光通信网络领域的应用受到光网络在最近几年所面临的网络复杂性的前所未有的增长的推动。这种复杂性的增加是由于引入了一系列可调和相互依赖的系统参数(例如,路由配置,调制格式,符号率,编码方案等),这些参数通过使用相干传输/接收技术,高级数字信号处理和光纤传播中非线性效应的补偿。在本文中,我们概述了ML在光通信和网络中的应用。我们对涉及该主题的相关文献进行分类和调查,并且我们还为对该领域感兴趣的研究人员和从业者提供了ML的入门教程。虽然最近出现了大量的研究论文,但ML光学网络的应用仍处于起步阶段:为了激发这一领域的进一步工作,我们总结了该论文提出了新的可能的研究方向。
translated by 谷歌翻译
This paper gives an overview of automatic speak er recognition technology, with an emphasis on text-independent recognition. Speak er recognition has been studied actively for several decades. W e give an overview of both the classical and the state-of-the-art methods. W e start with the fundamentals of automatic speak er recognition, concerning feature extraction and speak er modeling. W e elaborate advanced computational techniques to address robustness and session variability. The recent progress from vectors towards supervectors opens up a new area of exploration and represents a technology trend. W e also provide an overview of this recent development and discuss the evaluation methodology of speak er recognition systems. W e conclude the paper with discussion on future directions.
translated by 谷歌翻译
In the era of the Internet of Things (IoT), an enormous amount of sensing devices collect and/or generate various sensory data over time for a wide range of fields and applications. Based on the nature of the application, these devices will result in big or fast/real-time data streams. Applying analytics over such data streams to discover new information, predict future insights, and make control decisions is a crucial process that makes IoT a worthy paradigm for businesses and a quality-of-life improving technology. In this paper, we provide a thorough overview on using a class of advanced machine learning techniques, namely Deep Learning (DL), to facilitate the analytics and learning in the IoT domain. We start by articulating IoT data characteristics and identifying two major treatments for IoT data from a machine learning perspective, namely IoT big data analytics and IoT streaming data analytics. We also discuss why DL is a promising approach to achieve the desired analytics in these types of data and applications. The potential of using emerging DL techniques for IoT data analytics are then discussed, and its promises and challenges are introduced. We present a comprehensive background on different DL architectures and algorithms. We also analyze and summarize major reported research attempts that leveraged DL in the IoT domain. The smart IoT devices that have incorporated DL in their intelligence background are also discussed. DL implementation approaches on the fog and cloud centers in support of IoT applications are also surveyed. Finally, we shed light on some challenges and potential directions for future research. At the end of each section, we highlight the lessons learned based on our experiments and review of the recent literature.
translated by 谷歌翻译
This thesis describes the Generative Topographic Mapping (GTM) | a non-linear latent variable model, intended for modelling continuous, intrinsically low-dimensional probability distributions, embedded in high-dimensional spaces. It can be seen as a non-linear form of principal component analysis or factor analysis. It also provides a principled alternative to the self-organizing map | a widely established neural network model for unsupervised learning | resolving many of its associated theoretical problems. An important, potential application of the GTM is visualization of high-dimensional data. Since the GTM is non-linear, the relationship between data and its visual representation may be far from trivial, but a better understanding of this relationship can be gained by computing the so-called magniication factor. In essence, the magniication factor relates the distances between data points, as they appear when visualized, to the actual distances between those data points. There are two principal limitations of the basic GTM model. The computational eeort required will grow exponentially with the intrinsic dimensionality of the density model. However, if the intended application is visualization, this will typically not be a problem. The other limitation is the inherent structure of the GTM, which makes it most suitable for modelling moderately curved probability distributions of approximately rectangular shape. When the target distribution is very diierent to that, the aim of maintaining anìnterpretable' structure, suitable for visualizing data, may come in connict with the aim of providing a good density model. The fact that the GTM is a probabilistic model means that results from probability theory and statistics can be used to address problems such as model complexity. Furthermore, this framework provides solid ground for extending the GTM to wider contexts than that of this thesis.
translated by 谷歌翻译
Deep learning has arguably achieved tremendous success in recent years. In simple words, deep learning uses the composition of many nonlinear functions to model the complex dependency between input features and labels. While neural networks have a long history, recent advances have greatly improved their performance in computer vision, natural language processing, etc. From the statistical and scientific perspective, it is natural to ask: What is deep learning? What are the new characteristics of deep learning, compared with classical methods? What are the theoretical foundations of deep learning? To answer these questions, we introduce common neural network models (e.g., convolutional neural nets, recurrent neural nets, generative adversarial nets) and training techniques (e.g., stochastic gradient descent, dropout, batch normalization) from a statistical point of view. Along the way, we highlight new characteristics of deep learning (including depth and over-parametrization) and explain their practical and theoretical benefits. We also sample recent results on theories of deep learning, many of which are only suggestive. While a complete understanding of deep learning remains elusive, we hope that our perspectives and discussions serve as a stimulus for new statistical research.
translated by 谷歌翻译
Since the proposal of a fast learning algorithm for deep belief networks in 2006, the deep learning techniques have drawn ever-increasing research interests because of their inherent capability of overcoming the drawback of traditional algorithms dependent on hand-designed features. Deep learning approaches have also been found to be suitable for big data analysis with successful applications to computer vision, pattern recognition, speech recognition, natural language processing, and recommendation systems. In this paper, we discuss some widely-used deep learning architectures and their practical applications. An up-to-date overview is provided on four deep learning architectures, namely, autoencoder, convolutional neural network, deep belief network, and restricted Boltzmann machine. Different types of deep neural networks are surveyed and recent progresses are summarized. Applications of deep learning techniques on some selected areas (speech recognition, pattern recognition and computer vision) are highlighted. A list of future research topics are finally given with clear justifications.
translated by 谷歌翻译
A unified view of the area of sparse signal processing is presented in tutorial form by bringing together various fields in which the property of sparsity has been successfully exploited. For each of these fields, various algorithms and techniques, which have been developed to leverage sparsity, are described succinctly. The common potential benefits of significant reduction in sampling rate and processing manipulations through sparse signal processing are revealed. The key application domains of sparse signal processing are sampling, coding, spectral estimation, array processing, component analysis, and multipath channel estimation. In terms of the sampling process and reconstruction algorithms, linkages are made with random sampling, compressed sensing, and rate of innovation. The redundancy introduced by channel coding in finite and real Galois fields is then related to over-sampling with similar reconstruction algorithms. The error locator polynomial (ELP) and iterative methods are shown to work quite effectively for both sampling and coding applications. The methods of Prony, Pisarenko, and MUltiple SIgnal Classification (MUSIC) are next shown to be targeted at analyzing signals with sparse frequency domain representations. Specifically, the relations of the approach of Prony to an annihilating filter in rate of innovation and ELP in coding are emphasized; the Pisarenko and MUSIC methods are further improvements of the Prony method under noisy environments. The iterative methods developed for sampling and coding applications are shown to be powerful tools in spectral estimation. Such narrowband spectral estimation is then related to multi-source location and direction of arrival estimation in array processing. Sparsity in unobservable source signals is also shown to facilitate source separation in sparse component analysis; the algorithms developed in this area such as linear programming and matching pursuit are also widely used in compressed sensing. Finally, the multipath channel estimation problem is shown to have a sparse formulation; algorithms similar to sampling and coding are used to estimate typical multicarrier communication channels.
translated by 谷歌翻译
Deep Learning methods are currently the state-of-the
translated by 谷歌翻译
最近在许多不同的应用领域中对机器学习(ML)技术给予了极大的关注。本文提供了ML在电力线通信(PLC)中可以做什么的愿景。我们首先简要描述ML的经典公式,并将确定性问题与通信相关的统计问题区分开来。然后,我们讨论PLC中每层的ML应用,即表征和建模,物理层算法,媒体访问控制和网络算法。最后,分析了可以从ML的使用中受益的PLC的其他应用,如网格诊断。举例说明了数字示例,以便在该刺激信号/数据处理领域中验证想法并激励未来的研究工作。
translated by 谷歌翻译