深Q学习网络(DQN)是一种成功的方式,将增强学习与深神经网络结合在一起,并导致广泛应用强化学习。当将DQN或其他强化学习算法应用于现实世界问题时,一个具有挑战性的问题是数据收集。因此,如何提高数据效率是强化学习研究中最重要的问题之一。在本文中,我们提出了一个框架,该框架使用深q网络中的最大均值损失(m $^2 $ dqn)。我们没有在训练步骤中抽样一批体验,而是从体验重播中采样了几批,并更新参数,以使这些批次的最大td-Error最小化。所提出的方法可以通过替换损耗函数来与DQN算法的大多数现有技术结合使用。我们在几个健身游戏中使用了最广泛的技术DQN(DDQN)之一来验证该框架的有效性。结果表明,我们的方法会导致学习速度和性能的实质性提高。
translated by 谷歌翻译
经验重放机制允许代理多次使用经验。在以前的作品中,过渡的抽样概率根据其重要性进行调整。重新分配采样概率在每次迭代后的重传缓冲器的每个过渡是非常低效的。因此,经验重播优先算法重新计算时,相应的过渡进行采样,以获得计算效率转变的意义。然而,过渡的重要性水平动态变化的政策和代理人的价值函数被更新。此外,经验回放存储转换由可显著从代理的最新货币政策偏离剂的以前的政策产生。从代理引线的最新货币政策更关闭策略更新,这是有害的代理高偏差。在本文中,我们开发了一种新的算法,通过KL散度批次优先化体验重播(KLPER),其优先批次转换的,而不是直接优先每个过渡。此外,为了减少更新的截止policyness,我们的算法选择一个批次中的某一批次的数量和力量的通过很有可能是代理的最新货币政策所产生的一批学习代理。我们结合与深确定性政策渐变和Twin算法延迟深确定性政策渐变,并评估它在不同的连续控制任务。 KLPER提供培训期间的抽样效率,最终表现和政策的稳定性方面有前途的深确定性的连续控制算法的改进。
translated by 谷歌翻译
大多数强化学习算法都利用了经验重播缓冲液,以反复对代理商过去观察到的样本进行训练。这样可以防止灾难性的遗忘,但是仅仅对每个样本都分配了同等的重要性是一种天真的策略。在本文中,我们提出了一种根据样本可以从样本中学到多少样本确定样本优先级的方法。我们将样本的学习能力定义为随着时间的推移,与该样品相关的训练损失的稳定减少。我们开发了一种算法,以优先考虑具有较高学习能力的样本,同时将优先级较低,为那些难以学习的样本,通常是由噪声或随机性引起的。我们从经验上表明,我们的方法比随机抽样更强大,而且比仅在训练损失方面优先排序更好,即时间差损失,这是在香草优先的经验重播中使用的。
translated by 谷歌翻译
In value-based reinforcement learning methods such as deep Q-learning, function approximation errors are known to lead to overestimated value estimates and suboptimal policies. We show that this problem persists in an actor-critic setting and propose novel mechanisms to minimize its effects on both the actor and the critic. Our algorithm builds on Double Q-learning, by taking the minimum value between a pair of critics to limit overestimation. We draw the connection between target networks and overestimation bias, and suggest delaying policy updates to reduce per-update error and further improve performance. We evaluate our method on the suite of OpenAI gym tasks, outperforming the state of the art in every environment tested.
translated by 谷歌翻译
在探索中,由于当前的低效率而引起的强化学习领域,具有较大动作空间的学习控制政策是一个具有挑战性的问题。在这项工作中,我们介绍了深入的强化学习(DRL)算法呼叫多动作网络(MAN)学习,以应对大型离散动作空间的挑战。我们建议将动作空间分为两个组件,从而为每个子行动创建一个值神经网络。然后,人使用时间差异学习来同步训练网络,这比训练直接动作输出的单个网络要简单。为了评估所提出的方法,我们在块堆叠任务上测试了人,然后扩展了人类从Atari Arcade学习环境中使用18个动作空间的12个游戏。我们的结果表明,人的学习速度比深Q学习和双重Q学习更快,这意味着我们的方法比当前可用于大型动作空间的方法更好地执行同步时间差异算法。
translated by 谷歌翻译
在时间差异增强学习算法中,价值估计的差异会导致最大目标值的不稳定性和高估。已经提出了许多算法来减少高估,包括最近的几种集合方法,但是,没有通过解决估计方差作为高估的根本原因来表现出样品效率学习的成功。在本文中,我们提出了一种简单的集合方法,将目标值估计为集合均值。尽管它很简单,但卑鄙的(还是在Atari学习环境基准测试的实验中显示出明显的样本效率)。重要的是,我们发现大小5的合奏充分降低了估计方差以消除滞后目标网络,从而消除了它作为偏见的来源并进一步获得样本效率。我们以直观和经验的方式为曲线的设计选择证明了合理性,包括独立经验抽样的必要性。在一组26个基准ATARI环境中,曲线均优于所有经过测试的基线,包括最佳的基线,日出,在16/26环境中的100K交互步骤,平均为68​​%。在21/26的环境中,曲线还优于500k步骤的Rainbow DQN,平均为49%,并使用200K($ \ pm $ 100k)的交互步骤实现平均人级绩效。我们的实施可从https://github.com/indylab/meanq获得。
translated by 谷歌翻译
一种被称为优先体验重播(PER)的广泛研究的深钢筋学习(RL)技术使代理可以从与其时间差异(TD)误差成正比的过渡中学习。尽管已经表明,PER是离散作用域中深度RL方法总体性能的最关键组成部分之一,但许多经验研究表明,在连续控制中,它的表现非常低于参与者 - 批评算法。从理论上讲,我们表明,无法有效地通过具有较大TD错误的过渡对演员网络进行训练。结果,在Q网络下计算的近似策略梯度与在最佳Q功能下计算的实际梯度不同。在此激励的基础上,我们引入了一种新颖的经验重播抽样框架,用于演员批评方法,该框架还认为稳定性和最新发现的问题是Per的经验表现不佳。引入的算法提出了对演员和评论家网络的有效和高效培训的改进的新分支。一系列广泛的实验验证了我们的理论主张,并证明了引入的方法显着优于竞争方法,并获得了与标准的非政策参与者 - 批评算法相比,获得最先进的结果。
translated by 谷歌翻译
The deep reinforcement learning community has made several independent improvements to the DQN algorithm. However, it is unclear which of these extensions are complementary and can be fruitfully combined. This paper examines six extensions to the DQN algorithm and empirically studies their combination. Our experiments show that the combination provides state-of-the-art performance on the Atari 2600 benchmark, both in terms of data efficiency and final performance. We also provide results from a detailed ablation study that shows the contribution of each component to overall performance.
translated by 谷歌翻译
资产分配(或投资组合管理)是确定如何最佳将有限预算的资金分配给一系列金融工具/资产(例如股票)的任务。这项研究调查了使用无模型的深RL代理应用于投资组合管理的增强学习(RL)的性能。我们培训了几个RL代理商的现实股票价格,以学习如何执行资产分配。我们比较了这些RL剂与某些基线剂的性能。我们还比较了RL代理,以了解哪些类别的代理表现更好。从我们的分析中,RL代理可以执行投资组合管理的任务,因为它们的表现明显优于基线代理(随机分配和均匀分配)。四个RL代理(A2C,SAC,PPO和TRPO)总体上优于最佳基线MPT。这显示了RL代理商发现更有利可图的交易策略的能力。此外,基于价值和基于策略的RL代理之间没有显着的性能差异。演员批评者的表现比其他类型的药物更好。同样,在政策代理商方面的表现要好,因为它们在政策评估方面更好,样品效率在投资组合管理中并不是一个重大问题。这项研究表明,RL代理可以大大改善资产分配,因为它们的表现优于强基础。基于我们的分析,在政策上,参与者批评的RL药物显示出最大的希望。
translated by 谷歌翻译
基于Q学习的强化学习算法正在推动深入的强化学习(DRL)研究,以解决复杂的问题并在其中许多方面实现超人的表现。然而,已知Q学习是积极偏见的,因为它通过使用最大值的期望值噪声估计来学习。对动作值的系统高估与DRL方法的固有较高方差相结合会导致逐渐积累的错误,从而导致学习算法的差异。理想情况下,我们希望DRL代理人考虑到他们对每个动作的最佳性的不确定性,并能够利用它以对预期收益进行更明智的估计。在这方面,加权Q学习(WQL)有效地减少了偏见,并在随机环境中显示出显着的结果。 WQL使用估计动作值的加权总和,其中权重对应于每个动作值的概率为最大值。但是,这些概率的计算仅在表格设置中是实用的。在这项工作中,我们通过使用接受辍学训练的神经网络作为深豪斯过程的有效近似,从而提供了方法上的进步,以从DRL中的WQL属性中受益。特别是,我们采用具体的辍学变体来获得DRL认知不确定性的校准估计值。然后,通过采取几个随机前向通过动作值网络并以蒙特卡洛的方式计算权重来获得估计器。这样的权重是对应于最大W.R.T.的每个动作值的概率的贝叶斯估计。通过辍学估计的后验概率分布。我们展示了我们的新颖加权Q学习算法如何减少偏见W.R.T.相关基线,并提供了其在代表性基准方面的优势的经验证据。
translated by 谷歌翻译
本文介绍了用于交易单一资产的双重Q网络算法,即E-MINI S&P 500连续期货合约。我们使用经过验证的设置作为我们环境的基础,并具有多个扩展。我们的贸易代理商的功能不断扩展,包括其他资产,例如商品,从而产生了四种型号。我们还应对环境条件,包括成本和危机。我们的贸易代理商首先接受了特定时间段的培训,并根据新数据进行了测试,并将其与长期策略(市场)进行了比较。我们分析了各种模型与样本中/样本外性能之间有关环境的差异。实验结果表明,贸易代理人遵循适当的行为。它可以将其政策调整为不同的情况,例如在存在交易成本时更广泛地使用中性位置。此外,净资产价值超过了基准的净值,代理商在测试集中的市场优于市场。我们使用DDQN算法对代理商在金融领域中的行为提供初步见解。这项研究的结果可用于进一步发展。
translated by 谷歌翻译
股票交易策略在投资公司中起着至关重要的作用。但是,在复杂而动态的股票市场中获得最佳策略是一项挑战。我们探索了深入学习的潜力,以优化股票交易策略,从而最大程度地提高投资回报。选择30个股票作为我们的贸易股票,其日用价格被用作培训和交易市场环境。我们培训一个深入的增强学习代理,并获得自适应交易策略。评估了代理商的绩效,并将其与道琼斯工业平均水平和传统的最小变化投资组合分配策略进行了比较。拟议的深钢筋学习方法显示出在夏普比和累积回报方面都优于两个基准。
translated by 谷歌翻译
在钢筋学习中,体验重播存储过去的样本以进一步重用。优先采样是一个有希望的技术,可以更好地利用这些样品。以前的优先级标准包括TD误差,近似和纠正反馈,主要是启发式设计。在这项工作中,我们从遗憾最小化目标开始,并获得最佳的贝尔曼更新优先级探讨策略,可以直接最大化策略的返回。该理论表明,具有较高后视TD误差的数据,应在采样期间具有更高权重的重量来分配更高的Hindsight TD误差,更好的政策和更准确的Q值。因此,最先前的标准只会部分考虑这一战略。我们不仅为以前的标准提供了理论理由,还提出了两种新方法来计算优先级重量,即remern并恢复。 remern学习错误网络,而remert利用状态的时间顺序。这两种方法都以先前的优先考虑的采样算法挑战,包括Mujoco,Atari和Meta-World。
translated by 谷歌翻译
准确的价值估计对于禁止禁止增强学习是重要的。基于时间差学学习的算法通常容易容易出现过度或低估的偏差。在本文中,我们提出了一种称为自适应校准批评者(ACC)的一般方法,该方法使用最近的高方差,但不偏见的on-Police Rollouts来缓解低方差时间差目标的偏差。我们将ACC应用于截断的分位数批评,这是一种连续控制的算法,允许使用每个环境调谐的超参数调节偏差。生成的算法在训练渲染渲染超参数期间自适应调整参数不必要,并在Openai健身房连续控制基准测试中设置一个新的算法中,这些算法在所有环境中没有调整HyperParameters的所有算法中。此外,我们证明ACC通过进一步将其进一步应用于TD3并在此设置中显示出改进的性能而相当一般。
translated by 谷歌翻译
Off-policy reinforcement learning (RL) using a fixed offline dataset of logged interactions is an important consideration in real world applications. This paper studies offline RL using the DQN Replay Dataset comprising the entire replay experience of a DQN agent on 60 Atari 2600 games. We demonstrate that recent off-policy deep RL algorithms, even when trained solely on this fixed dataset, outperform the fully-trained DQN agent. To enhance generalization in the offline setting, we present Random Ensemble Mixture (REM), a robust Q-learning algorithm that enforces optimal Bellman consistency on random convex combinations of multiple Q-value estimates. Offline REM trained on the DQN Replay Dataset surpasses strong RL baselines. Ablation studies highlight the role of offline dataset size and diversity as well as the algorithm choice in our positive results. Overall, the results here present an optimistic view that robust RL algorithms used on sufficiently large and diverse offline datasets can lead to high quality policies. To provide a testbed for offline RL and reproduce our results, the DQN Replay Dataset is released at offline-rl.github.io.
translated by 谷歌翻译
无模型的深度加强学习(RL)算法已广泛用于一系列复杂的控制任务。然而,慢的收敛和样本效率低下在R1中仍然具有挑战性,特别是在处理连续和高维状态空间时。为了解决这个问题,我们提出了一种通过绘制潜在的Anderson加速度(RAA)的想法,提出了一种无模型的非政策深度RL算法的一般加速方法,这是加速扰动解决固定点问题的有效方法。具体来说,我们首先解释如何使用Anderson加速直接应用策略迭代。然后,我们通过引入正则化术语来扩展RAA,以控制函数近似误差引起的扰动的影响。我们进一步提出了两种策略,即逐步更新和自适应重启,以提高性能。我们的方法的有效性在各种基准任务中评估,包括Atari 2600和Mujoco。实验结果表明,我们的方法大大提高了最先进的深度RL算法的学习速度和最终性能。
translated by 谷歌翻译
与政策策略梯度技术相比,使用先前收集的数据的无模型的无模型深钢筋学习(RL)方法可以提高采样效率。但是,当利益政策的分布与收集数据的政策之间的差异时,非政策学习变得具有挑战性。尽管提出了良好的重要性抽样和范围的政策梯度技术来补偿这种差异,但它们通常需要一系列长轨迹,以增加计算复杂性并引起其他问题,例如消失或爆炸梯度。此外,由于需要行动概率,它们对连续动作领域的概括严格受到限制,这不适合确定性政策。为了克服这些局限性,我们引入了一种替代的非上政策校正算法,用于连续作用空间,参与者 - 批判性非政策校正(AC-OFF-POC),以减轻先前收集的数据引入的潜在缺陷。通过由代理商对随机采样批次过渡的状态的最新动作决策计算出的新颖差异度量,该方法不需要任何策略的实际或估计的行动概率,并提供足够的一步重要性抽样。理论结果表明,引入的方法可以使用固定的独特点获得收缩映射,从而可以进行“安全”的非政策学习。我们的经验结果表明,AC-Off-POC始终通过有效地安排学习率和Q学习和政策优化的学习率,以比竞争方法更少的步骤改善最新的回报。
translated by 谷歌翻译
Deep reinforcement learning (RL) has achieved several high profile successes in difficult decision-making problems. However, these algorithms typically require a huge amount of data before they reach reasonable performance. In fact, their performance during learning can be extremely poor. This may be acceptable for a simulator, but it severely limits the applicability of deep RL to many real-world tasks, where the agent must learn in the real environment. In this paper we study a setting where the agent may access data from previous control of the system. We present an algorithm, Deep Q-learning from Demonstrations (DQfD), that leverages small sets of demonstration data to massively accelerate the learning process even from relatively small amounts of demonstration data and is able to automatically assess the necessary ratio of demonstration data while learning thanks to a prioritized replay mechanism. DQfD works by combining temporal difference updates with supervised classification of the demonstrator's actions. We show that DQfD has better initial performance than Prioritized Dueling Double Deep Q-Networks (PDD DQN) as it starts with better scores on the first million steps on 41 of 42 games and on average it takes PDD DQN 83 million steps to catch up to DQfD's performance. DQfD learns to out-perform the best demonstration given in 14 of 42 games. In addition, DQfD leverages human demonstrations to achieve state-of-the-art results for 11 games. Finally, we show that DQfD performs better than three related algorithms for incorporating demonstration data into DQN.
translated by 谷歌翻译
政策深度加强学习算法具有低数据利用率,需要重大的政策改进体验。本文提出了一种具有优先级轨迹重放(PTR-PPO)的近端策略优化算法,该轨道重播(PTR-PPO)结合了策略和违规方法来提高采样效率,通过优先考虑旧政策产生的轨迹的重播。我们首先根据轨迹的特点设计三个轨迹优先级:前两个是基于一步经验广义优势估计(GAE)值的最大和平均轨迹优先级,以及基于标准化未折衷奖励的最后一次奖励轨迹优先级。然后,我们将优先轨迹重放纳入PPO算法,提出了一个截断的重要性重量方法,克服了多步体验的大量重量引起的高方差,并在违规条件下为PPO设计了政策改进损失函数。我们评估PTR-PPO在一套ATARI离散控制任务中的性能,实现最先进的性能。此外,通过在训练期间分析优先存储器中各个位置的优先级的热图,我们发现内存大小和卷展展览长度可以对轨迹优先级的分布产生重大影响,并且因此在算法的性能上。
translated by 谷歌翻译
在本文中,我们提出了一种新的马尔可夫决策过程学习分层表示的方法。我们的方法通过将状态空间划分为子集,并定义用于在分区之间执行转换的子任务。我们制定将状态空间作为优化问题分区的问题,该优化问题可以使用梯度下降给出一组采样的轨迹来解决,使我们的方法适用于大状态空间的高维问题。我们经验验证方法,通过表示它可以成功地在导航域中成功学习有用的分层表示。一旦了解到,分层表示可以用于解决给定域中的不同任务,从而概括跨任务的知识。
translated by 谷歌翻译