准确且一致的边界分割在肿瘤体积估计及其在医学图像分割领域中的处理中起着重要作用。在全球范围内,肺癌是死亡的主要原因之一,肺结节的早期发现对于早期癌症诊断和患者的存活率至关重要。这项研究的目的是证明DeepHealth Toolkit的可行性,包括PYECVL和PYEDDL库(包括精确的肺结节)。使用PYECVL和PYEDDL在UnitoChest上进行了肺结节分割的实验,以进行数据预处理以及神经网络训练。结果描述了在较宽的直径范围内对肺结节的准确分割,并且在传统检测方法上的准确性更好。本文中使用的数据集和代码可作为基线参考公开提供。
translated by 谷歌翻译
肺癌是世界大多数国家的死亡原因。由于提示肿瘤的诊断可以允许肿瘤学家辨别他们的性质,类型和治疗方式,CT扫描图像的肿瘤检测和分割是全球的关键研究领域。本文通过在Lotus DataSet上应用二维离散小波变换(DWT)来接近肺肿瘤分割,以进行更细致的纹理分析,同时将来自相邻CT切片的信息集成到馈送到深度监督的多路仓模型之前。在训练网络的同时,学习速率,衰减和优化算法的变化导致了不同的骰子共同效率,其详细统计数据已经包含在本文中。我们还讨论了此数据集中的挑战以及我们选择如何克服它们。本质上,本研究旨在通过试验多个适当的网络来最大化从二维CT扫描切片预测肿瘤区域的成功率,导致骰子共同效率为0.8472。
translated by 谷歌翻译
肺癌是癌症相关死亡率的主要原因。尽管新技术(例如图像分割)对于改善检测和较早诊断至关重要,但治疗该疾病仍然存在重大挑战。特别是,尽管治愈性分辨率增加,但许多术后患者仍会出现复发性病变。因此,非常需要预后工具,可以更准确地预测患者复发的风险。在本文中,我们探讨了卷积神经网络(CNN)在术前计算机断层扫描(CT)图像中存在的分割和复发风险预测。首先,随着医学图像分割的最新进展扩展,剩余的U-NET用于本地化和表征每个结节。然后,确定的肿瘤将传递给第二个CNN进行复发风险预测。该系统的最终结果是通过随机的森林分类器产生的,该分类器合成具有临床属性的第二个网络的预测。分割阶段使用LIDC-IDRI数据集,并获得70.3%的骰子得分。复发风险阶段使用了国家癌症研究所的NLST数据集,并获得了73.0%的AUC。我们提出的框架表明,首先,自动结节分割方法可以概括地为各种多任务系统提供管道,其次,深度学习和图像处理具有改善当前预后工具的潜力。据我们所知,这是第一个完全自动化的细分和复发风险预测系统。
translated by 谷歌翻译
CT灌注(CTP)是一项体检,用于测量对比度溶液通过像素逐像素的大脑通过大脑的通过。目的是为缺血性病变迅速绘制“灌注图”(即脑血体积,脑血流量和峰值的时间),并能够区分核心和甲瘤区域。在缺血性中风的背景下,精确而快速的诊断可以确定脑组织的命运,并在紧急情况下指导干预和治疗。在这项工作中,我们介绍了UnitObrain数据集,这是CTP的第一个开源数据集。它包括一百多名患者的队列,并伴随着患者元数据和最新算法获得的地面真相图。我们还建议使用欧洲图书馆ECVL和EDDL进行图像处理和开发深度学习模型,提出了一种基于神经网络的新型算法。神经网络模型获得的结果与地面真相相匹配,并为所需数量的CT地图的潜在子采样开辟了道路,这对患者施加了重辐射剂量。
translated by 谷歌翻译
Segmentation of lung tissue in computed tomography (CT) images is a precursor to most pulmonary image analysis applications. Semantic segmentation methods using deep learning have exhibited top-tier performance in recent years. This paper presents a fully automatic method for identifying the lungs in three-dimensional (3D) pulmonary CT images, which we call it Lung-Net. We conjectured that a significant deeper network with inceptionV3 units can achieve a better feature representation of lung CT images without increasing the model complexity in terms of the number of trainable parameters. The method has three main advantages. First, a U-Net architecture with InceptionV3 blocks is developed to resolve the problem of performance degradation and parameter overload. Then, using information from consecutive slices, a new data structure is created to increase generalization potential, allowing more discriminating features to be extracted by making data representation as efficient as possible. Finally, the robustness of the proposed segmentation framework was quantitatively assessed using one public database to train and test the model (LUNA16) and two public databases (ISBI VESSEL12 challenge and CRPF dataset) only for testing the model; each database consists of 700, 23, and 40 CT images, respectively, that were acquired with a different scanner and protocol. Based on the experimental results, the proposed method achieved competitive results over the existing techniques with Dice coefficient of 99.7, 99.1, and 98.8 for LUNA16, VESSEL12, and CRPF datasets, respectively. For segmenting lung tissue in CT images, the proposed model is efficient in terms of time and parameters and outperforms other state-of-the-art methods. Additionally, this model is publicly accessible via a graphical user interface.
translated by 谷歌翻译
最近关于Covid-19的研究表明,CT成像提供了评估疾病进展和协助诊断的有用信息,以及帮助理解疾病。有越来越多的研究,建议使用深度学习来使用胸部CT扫描提供快速准确地定量Covid-19。兴趣的主要任务是胸部CT扫描的肺和肺病变的自动分割,确认或疑似Covid-19患者。在这项研究中,我们使用多中心数据集比较12个深度学习算法,包括开源和内部开发的算法。结果表明,合并不同的方法可以提高肺部分割,二元病变分割和多种子病变分割的总体测试集性能,从而分别为0.982,0.724和0.469的平均骰子分别。将得到的二元病变分段为91.3ml的平均绝对体积误差。通常,区分不同病变类型的任务更加困难,分别具有152mL的平均绝对体积差,分别为整合和磨碎玻璃不透明度为0.369和0.523的平均骰子分数。所有方法都以平均体积误差进行二元病变分割,该分段优于人类评估者的视觉评估,表明这些方法足以用于临床实践中使用的大规模评估。
translated by 谷歌翻译
Despite high global prevalence of hepatic steatosis, no automated diagnostics demonstrated generalizability in detecting steatosis on multiple international datasets. Traditionally, hepatic steatosis detection relies on clinicians selecting the region of interest (ROI) on computed tomography (CT) to measure liver attenuation. ROI selection demands time and expertise, and therefore is not routinely performed in populations. To automate the process, we validated an existing artificial intelligence (AI) system for 3D liver segmentation and used it to purpose a novel method: AI-ROI, which could automatically select the ROI for attenuation measurements. AI segmentation and AI-ROI method were evaluated on 1,014 non-contrast enhanced chest CT images from eight international datasets: LIDC-IDRI, NSCLC-Lung1, RIDER, VESSEL12, RICORD-1A, RICORD-1B, COVID-19-Italy, and COVID-19-China. AI segmentation achieved a mean dice coefficient of 0.957. Attenuations measured by AI-ROI showed no significant differences (p = 0.545) and a reduction of 71% time compared to expert measurements. The area under the curve (AUC) of the steatosis classification of AI-ROI is 0.921 (95% CI: 0.883 - 0.959). If performed as a routine screening method, our AI protocol could potentially allow early non-invasive, non-pharmacological preventative interventions for hepatic steatosis. 1,014 expert-annotated liver segmentations of patients with hepatic steatosis annotations can be downloaded here: https://drive.google.com/drive/folders/1-g_zJeAaZXYXGqL1OeF6pUjr6KB0igJX.
translated by 谷歌翻译
肺癌是最致命的癌症之一,部分诊断和治疗取决于肿瘤的准确描绘。目前是最常见的方法的人以人为本的分割,须遵守观察者间变异性,并且考虑到专家只能提供注释的事实,也是耗时的。最近展示了有前途的结果,自动和半自动肿瘤分割方法。然而,随着不同的研究人员使用各种数据集和性能指标验证了其算法,可靠地评估这些方法仍然是一个开放的挑战。通过2018年IEEE视频和图像处理(VIP)杯竞赛创建的计算机断层摄影扫描(LOTUS)基准测试的肺起源肿瘤分割的目标是提供唯一的数据集和预定义的指标,因此不同的研究人员可以开发和以统一的方式评估他们的方法。 2018年VIP杯始于42个国家的全球参与,以获得竞争数据。在注册阶段,有129名成员组成了来自10个国家的28个团队,其中9个团队将其达到最后阶段,6队成功完成了所有必要的任务。简而言之,竞争期间提出的所有算法都是基于深度学习模型与假阳性降低技术相结合。三种决赛选手开发的方法表明,有希望的肿瘤细分导致导致越来越大的努力应降低假阳性率。本次竞争稿件概述了VIP-Cup挑战,以及所提出的算法和结果。
translated by 谷歌翻译
肝脏是脊椎动物中最关键的代谢器官之一,由于其在人体中的重要功能,例如废物产物和药物的血液排毒。由于肝肿瘤引起的肝病是全球最常见的死亡率之一。因此,在肿瘤发育的早期阶段检测肝肿瘤是医疗治疗的关键部分。许多成像方式可以用作检测肝肿瘤的帮助工具。计算机断层扫描(CT)是软组织器官(例如肝脏)最常用的成像方式。这是因为它是一种侵入性方式,可以相对迅速捕获。本文提出了一个有效的自动肝分割框架,以使用3D CNN深度元网络模型检测和分割肝脏腹部扫描。许多研究采用了精确分割肝区域,然后使用分割的肝区域作为肿瘤分割方法的输入,因为它降低了由于将腹部器官分割为肿瘤而导致的错误率。所提出的3D CNN DeepMedic模型具有两个输入途径,而不是一个途径,如原始3D CNN模型所示。在本文中,该网络提供了多个腹部CT版本,这有助于提高细分质量。提出的模型分别达到94.36%,94.57%,91.86%和93.14%的精度,灵敏度,特异性和骰子相似性得分。实验结果表明该方法的适用性。
translated by 谷歌翻译
胰腺癌是与癌症相关死亡的全球主要原因之一。尽管深度学习在计算机辅助诊断和检测方法(CAD)方法中取得了成功,但很少关注胰腺癌的检测。我们提出了一种检测胰腺肿瘤的方法,该方法在周围的解剖结构中利用临床上的特征,从而更好地旨在利用放射科医生的知识,而不是其他常规的深度学习方法。为此,我们收集了一个新的数据集,该数据集由99例胰腺导管腺癌(PDAC)和97例没有胰腺肿瘤的对照病例组成。由于胰腺癌的生长模式,肿瘤可能总是可见为低音病变,因此,专家指的是二次外部特征的可见性,这些特征可能表明肿瘤的存在。我们提出了一种基于U-NET样深的CNN的方法,该方法利用以下外部次要特征:胰管,常见的胆管和胰腺以及处理后的CT扫描。使用这些功能,该模型如果存在胰腺肿瘤。这种用于分类和本地化方法的细分实现了99%的敏感性(一个案例)和99%的特异性,这比以前的最新方法的灵敏度增加了5%。与以前的PDAC检测方法相比,该模型还以合理的精度和较短的推理时间提供位置信息。这些结果提供了显着的性能改善,并强调了在开发新型CAD方法时纳入临床专家知识的重要性。
translated by 谷歌翻译
肺癌近年来一直是最普遍的疾病之一。根据该领域的研究,每年在美国确定超过20万个案件。不受控制的繁殖和肺细胞的生长导致恶性肿瘤形成。最近,深入学习算法,特别是卷积神经网络(CNN),已成为自动诊断疾病的高级方式。本文的目的是审查不同的模型,导致诊断早期肺癌的不同准确性和敏感性,并帮助该领域的医生和研究人员。这项工作的主要目的是确定基于深度学习的肺癌存在的挑战。经过系统地编写了调查,这些调查结合了定期的映射和文献综述,从2016年到2021年审查该领域的32次会议和期刊文章。在分析和审查条款后,正在回答条款中提出的问题。由于对相关文章的完全审查和系统化,本领域,这项研究优于该领域的其他综述文章。
translated by 谷歌翻译
近年来,机器学习已显示出广泛的增长,现在通常应用于敏感区域。为了在部署前进行适当的预测模型验证,模型必须是确定性的。但是,主要的机器学习库默认用于基于原子操作的非确定性算法的使用。仅修复所有随机种子不足以确定性机器学习。为了克服这一缺点,各种机器学习库发布了与非确定性算法的确定性对应物。我们评估了这些算法对确定性和运行时的影响。基于这些结果,我们为确定性机器学习制定了一系列要求,并开发了新的软件解决方案MLF核心生态系统,该解决方案有助于机器学习项目以满足并保持这些要求。我们应用了MLF核心在各种生物医学领域开发确定性模型,包括带有张量的单细胞自动编码器,基于Pytorch的CT扫描中的基于Pytorch的U-NET模型,以及基于XGBoost的基因表达谱的肝癌分割和基于肝癌的肝癌分类器。
translated by 谷歌翻译
多模式性荧光脱氧葡萄糖(FDG)正电子发射断层扫描 /计算机断层扫描(PET / CT)已常规用于评估常见癌症,例如肺癌,淋巴瘤和黑色素瘤。这主要归因于以下事实:PET/CT结合了对PET肿瘤检测的高灵敏度和CT的解剖学信息。在PET/CT图像评估中,自动肿瘤分割是重要的一步,近年来,基于深度学习的方法已成为最新方法。不幸的是,现有的方法倾向于过度细分肿瘤区域,并包括正常摄取器官,炎症和其他感染等区域。在这项研究中,我们引入了一个假阳性还原网络以克服这一限制。我们首先引入了一个自制的预训练的全球分割模块,以使用自我监督的预训练的编码器粗糙地描绘候选肿瘤区域。然后,通过局部细化模块去除假阳性来完善候选肿瘤区域。我们对MICCAI 2022自动病变分割的实验在全身FDG-PET/CT(AUTOPET)挑战数据集中表明,我们的方法在初步测试数据中获得了0.9324的骰子得分,并在排行榜上排名第一。我们的方法在最终测试数据的前7位方法中也排名,最终排名将在2022 MICCAI AUTOPET研讨会期间宣布。我们的代码可在以下网址提供:https://github.com/yigepeng/autopet_false_posisity_reduction。
translated by 谷歌翻译
基于深度学习(DL)的医学图像分类和细分是诊断当前COVID 19的变异病毒的紧急研究主题。在肺的Covid-19计算机断层扫描(CT)图像中,地面玻璃浊度是需要专业诊断的最常见发现。基于这种情况,一些研究人员提出了相关的DL模型,这些模型可以在缺乏专业知识时取代诊所的专业诊断专家。但是,尽管DL方法在医学图像处理中具有惊人的性能,但有限的数据集可能是发展人类级别诊断准确性的挑战。此外,深度学习算法面临着将三个甚至多个维度分类的医学图像分类和分割的挑战,并保持高精度率。因此,有了确保高水平的准确性,我们的模型可以将患者的CT图像分为三种类型:正常,肺炎和covid。随后,两个数据集用于分割,其中一个数据集甚至只有有限的数据(20例)。我们的系统将分类模型和分割模型结合在一起,建立在RESNET50和3D U-NET算法的基础上。通过使用不同的数据集进行喂食,将根据分类结果进行感染区域的共vid图像分割。我们的模型通过3种类型的肺部病变分类达到94.52%的准确性:卷,肺炎和正常。对于将来的医疗用途,将模型嵌入医疗设施可能是一种有效的方法,可以协助或替代医生诊断,因此,在COVID-19情况下,更广泛的变异病毒问题也可以成功解决。
translated by 谷歌翻译
本文提出了第二版的头部和颈部肿瘤(Hecktor)挑战的概述,作为第24届医学图像计算和计算机辅助干预(Miccai)2021的卫星活动。挑战由三个任务组成与患有头颈癌(H&N)的患者的PET / CT图像的自动分析有关,专注于oropharynx地区。任务1是FDG-PET / CT图像中H&N主肿瘤肿瘤体积(GTVT)的自动分割。任务2是来自同一FDG-PET / CT的进展自由生存(PFS)的自动预测。最后,任务3与任务2的任务2与参与者提供的地面真理GTVT注释相同。这些数据从六个中心收集,总共325个图像,分为224个培训和101个测试用例。通过103个注册团队和448个结果提交的重要参与,突出了对挑战的兴趣。在第一任务中获得0.7591的骰子相似度系数(DSC),分别在任务2和3中的0.7196和0.6978的一致性指数(C-Index)。在所有任务中,发现这种方法的简单性是确保泛化性能的关键。 PFS预测性能在任务2和3中的比较表明,提供GTVT轮廓对于实现最佳结果,这表明可以使用完全自动方法。这可能避免了对GTVT轮廓的需求,用于可重复和大规模的辐射瘤研究的开头途径,包括千元潜在的受试者。
translated by 谷歌翻译
我们为Covid-19的快速准确CT(DL-FACT)测试提供了一系列深度学习的计算框架。我们开发了基于CT的DL框架,通过基于DL的CT图像增强和分类来提高Covid-19(加上其变体)的测试速度和准确性。图像增强网络适用于DDNet,短暂的Dennet和基于Deconvolulate的网络。为了展示其速度和准确性,我们在Covid-19 CT图像的几个来源中评估了DL-FARE。我们的结果表明,DL-FACT可以显着缩短几天到几天的周转时间,并提高Covid-19测试精度高达91%。DL-FACT可以用作诊断和监测Covid-19的医学专业人员的软件工具。
translated by 谷歌翻译
了解模型预测在医疗保健方面至关重要,以促进模型正确性的快速验证,并防止利用利用混淆变量的模型。我们介绍了体积医学图像中可解释的多种异常分类的挑战新任务,其中模型必须指示用于预测每个异常的区域。为了解决这项任务,我们提出了一个多实例学习卷积神经网络,AxialNet,允许识别每个异常的顶部切片。接下来我们将赫雷库姆纳入注意机制,识别子切片区域。我们证明,对于Axialnet,Hirescam的说明得到保证,以反映所用模型的位置,与Grad-Cam不同,有时突出不相关的位置。使用一种产生忠实解释的模型,我们旨在通过一种新颖的面具损失来改善模型的学习,利用赫克斯克姆和3D允许的区域来鼓励模型仅预测基于器官的异常,其中出现的异常。 3D允许的区域通过新方法,分区自动获得,其组合从放射学报告中提取的位置信息与通过形态图像处理获得的器官分割图。总体而言,我们提出了第一种模型,用于解释容量医学图像中的可解释的多异常预测,然后使用掩模损耗来实现36,316扫描的Rad-Chessct数据集中多个异常的器官定位提高33%,代表状态本领域。这项工作推进了胸部CT卷中多种异常模型的临床适用性。
translated by 谷歌翻译
随着深度学习方法的进步,如深度卷积神经网络,残余神经网络,对抗网络的进步。 U-Net架构最广泛利用生物医学图像分割,以解决目标区域或子区域的识别和检测的自动化。在最近的研究中,基于U-Net的方法在不同应用中显示了最先进的性能,以便在脑肿瘤,肺癌,阿尔茨海默,乳腺癌等疾病的早期诊断和治疗中发育计算机辅助诊断系统等,使用各种方式。本文通过描述U-Net框架来提出这些方法的成功,然后通过执行1)型号的U-Net变体进行综合分析,2)模特内分类,建立更好的见解相关的挑战和解决方案。此外,本文还强调了基于U-Net框架在持续的大流行病,严重急性呼吸综合征冠状病毒2(SARS-COV-2)中的贡献也称为Covid-19。最后,分析了这些U-Net变体的优点和相似性以及生物医学图像分割所涉及的挑战,以发现该领域的未来未来的研究方向。
translated by 谷歌翻译
The devastation caused by the coronavirus pandemic makes it imperative to design automated techniques for a fast and accurate detection. We propose a novel non-invasive tool, using deep learning and imaging, for delineating COVID-19 infection in lungs. The Ensembling Attention-based Multi-scaled Convolution network (EAMC), employing Leave-One-Patient-Out (LOPO) training, exhibits high sensitivity and precision in outlining infected regions along with assessment of severity. The Attention module combines contextual with local information, at multiple scales, for accurate segmentation. Ensemble learning integrates heterogeneity of decision through different base classifiers. The superiority of EAMC, even with severe class imbalance, is established through comparison with existing state-of-the-art learning models over four publicly-available COVID-19 datasets. The results are suggestive of the relevance of deep learning in providing assistive intelligence to medical practitioners, when they are overburdened with patients as in pandemics. Its clinical significance lies in its unprecedented scope in providing low-cost decision-making for patients lacking specialized healthcare at remote locations.
translated by 谷歌翻译
肿瘤分割是放疗治疗计划的基本步骤。为了确定口咽癌患者(OPC)原发性肿瘤(GTVP)的准确分割,需要同时评估不同图像模态,并从不同方向探索每个图像体积。此外,分割的手动固定边界忽略了肿瘤描述中已知的空间不确定性。这项研究提出了一种新型的自动深度学习(DL)模型,以在注册的FDG PET/CT图像上进行逐片自适应GTVP分割的辐射肿瘤学家。我们包括138名在我们研究所接受过(化学)辐射治疗的OPC患者。我们的DL框架利用了间和板板的上下文。连续3片的串联FDG PET/CT图像和GTVP轮廓的序列用作输入。进行了3倍的交叉验证,进行了3​​次,对从113例患者的轴向(a),矢状(s)和冠状(c)平面提取的序列进行了训练。由于体积中的连续序列包含重叠的切片,因此每个切片产生了平均的三个结果预测。在A,S和C平面中,输出显示具有预测肿瘤的概率不同的区域。使用平均骰子得分系数(DSC)评估了25名患者的模型性能。预测是最接近地面真理的概率阈值(在A中为0.70,s为0.70,在s中为0.77,在C平面中为0.80)。提出的DL模型的有希望的结果表明,注册的FDG PET/CT图像上的概率图可以指导逐片自适应GTVP分割中的辐射肿瘤学家。
translated by 谷歌翻译