链路预测在知识图中起着重要作用,这是许多人工智能任务的重要资源,但它通常受不完整的限制。在本文中,我们提出了知识图表BERT for Link预测,名为LP-BERT,其中包含两个培训阶段:多任务预训练和知识图微调。预训练策略不仅使用掩码语言模型(MLM)来学习上下文语料库的知识,还引入掩模实体模型(MEM)和掩模关系模型(MRM),其可以通过预测语义来学习三元组的关系信息基于实体和关系元素。结构化三维关系信息可以转换为非结构化语义信息,可以将其与上下文语料库信息一起集成到培训模型中。在微调阶段,灵感来自对比学习,我们在样本批量中进行三样式的负面取样,这大大增加了负采样的比例,同时保持训练时间几乎不变。此外,我们提出了一种基于Triples的逆关系的数据增强方法,以进一步增加样本分集。我们在WN18RR和UMLS数据集上实现最先进的结果,特别是HITS @ 10指示器从WN18RR数据集上的先前最先进的结果提高了5 \%。
translated by 谷歌翻译
The ability of knowledge graphs to represent complex relationships at scale has led to their adoption for various needs including knowledge representation, question-answering, fraud detection, and recommendation systems. Knowledge graphs are often incomplete in the information they represent, necessitating the need for knowledge graph completion tasks, such as link and relation prediction. Pre-trained and fine-tuned language models have shown promise in these tasks although these models ignore the intrinsic information encoded in the knowledge graph, namely the entity and relation types. In this work, we propose the Knowledge Graph Language Model (KGLM) architecture, where we introduce a new entity/relation embedding layer that learns to differentiate distinctive entity and relation types, therefore allowing the model to learn the structure of the knowledge graph. In this work, we show that further pre-training the language models with this additional embedding layer using the triples extracted from the knowledge graph, followed by the standard fine-tuning phase sets a new state-of-the-art performance for the link prediction task on the benchmark datasets.
translated by 谷歌翻译
知识嵌入(KE)通过将实体和关系嵌入连续的向量空间来表示知识图(kg)。现有方法主要基于结构或基于描述。基于结构的方法学习保留KGS固有结构的表示。它们不能很好地代表具有有限结构信息的现实世界中的丰富长尾实体。基于描述的方法利用文本信息和语言模型。朝这个方向迈出的先前方法几乎不能胜过基于结构的结构,并且遇到了昂贵的负面抽样和限制性描述需求等问题。在本文中,我们提出了LMKE,该LMKE采用语言模型来得出知识嵌入,旨在既富集了长尾实体的表示形式又旨在解决先前的基于描述的方法的问题。我们通过对比度学习框架制定基于描述的KE学习,以提高培训和评估的效率。实验结果表明,LMKE在链接预测和三重分类的KE基准上实现了最先进的性能,尤其是对于长尾实体。
translated by 谷歌翻译
学术知识图(KGS)提供了代表科学出版物编码的知识的丰富的结构化信息来源。随着出版的科学文学的庞大,包括描述科学概念的过多的非均匀实体和关系,这些公斤本质上是不完整的。我们呈现Exbert,一种利用预先训练的变压器语言模型来执行学术知识图形完成的方法。我们将知识图形的三元组模型为文本并执行三重分类(即,属于KG或不属于KG)。评估表明,在三重分类,链路预测和关系预测的任务中,Exbert在三个学术kg完成数据集中表现出其他基线。此外,我们将两个学术数据集作为研究界的资源,从公共公共公报和在线资源中收集。
translated by 谷歌翻译
完成知识三胞胎的任务具有广泛的下游应用程序。结构和语义信息在知识图完成中起着重要作用。与以前依靠知识图的结构或语义的方法不同,我们建议将语义共同嵌入知识三胞胎的自然语言描述及其结构信息。我们的方法通过对概率结构化损失进行微调预训练的语言模型来嵌入完成任务的知识图,其中语言模型的正向通过捕获语义和损失重建结构。我们对各种知识图基准的广泛实验证明了我们方法的最新性能。我们还表明,由于语义的更好使用,我们的方法可以显着提高低资源制度的性能。代码和数据集可在https://github.com/pkusjh/lass上找到。
translated by 谷歌翻译
由于知识图(kgs)的不完整,旨在预测kgs中未观察到的关系的零照片链接预测(ZSLP)引起了研究人员的最新兴趣。一个常见的解决方案是将关系的文本特征(例如表面名称或文本描述)用作辅助信息,以弥合所见关系和看不见的关系之间的差距。当前方法学习文本中每个单词令牌的嵌入。这些方法缺乏稳健性,因为它们遭受了量不足(OOV)的问题。同时,建立在字符n-grams上的模型具有为OOV单词生成表达式表示的能力。因此,在本文中,我们提出了一个为零链接预测(HNZSLP)的层次N-gram框架,该框架考虑了ZSLP的关系n-gram之间的依赖项。我们的方法通过首先在表面名称上构造层次n-gram图来进行起作用,以模拟导致表面名称的N-gram的组织结构。然后,将基于变压器的革兰amtransformer呈现,以建模层次n-gram图,以构建ZSLP的关系嵌入。实验结果表明,提出的HNZSLP在两个ZSLP数据集上实现了最先进的性能。
translated by 谷歌翻译
知识图表(kg)的表示学习模型已被证明是有效地编码结构信息并在kgs上进行推理。在本文中,我们提出了一种用于知识图表表示学习的新型预训练 - 然后微调框架,其中kg模型首先用三重分类任务预先培训,然后在特定的下游任务上进行判别微调作为实体类型预测和实体对齐。借鉴典型的预训练语言模型学习深层语境化词表示的一般思想,我们提出了学习预先训练的kg表示与目标三重编码的结构和上下文三元组。实验结果表明,微调SCOP不仅优于下游任务组合的基线的结果,而且还避免了特定于特定的特定模型设计和参数培训。
translated by 谷歌翻译
知识图(kgs)将世界知识建模为结构三元组是不可避免的。多模式知识图(MMKGS)仍然存在此类问题。因此,知识图完成(KGC)对于预测现有KG中缺失的三元组至关重要。至于现有的KGC方法,基于嵌入的方法依靠手动设计来利用多模式信息,而基于芬太尼的方法在链接预​​测中并不优于基于嵌入的方法。为了解决这些问题,我们提出了一个Visualbert增强知识图完成模型(简称VBKGC)。 VBKGC可以为实体捕获深层融合的多模式信息,并将其集成到KGC模型中。此外,我们通过设计一种称为Twins Twins负抽样的新的负抽样策略来实现KGC模型的共同设计和负抽样。双胞胎阴性采样适用于多模式场景,可以对齐实体的不同嵌入。我们进行了广泛的实验,以显示VBKGC在链接预测任务上的出色表现,并进一步探索VBKGC。
translated by 谷歌翻译
与伯特(Bert)等语言模型相比,已证明知识增强语言表示的预培训模型在知识基础构建任务(即〜关系提取)中更有效。这些知识增强的语言模型将知识纳入预训练中,以生成实体或关系的表示。但是,现有方法通常用单独的嵌入表示每个实体。结果,这些方法难以代表播出的实体和大量参数,在其基础代币模型之上(即〜变压器),必须使用,并且可以处理的实体数量为由于内存限制,实践限制。此外,现有模型仍然难以同时代表实体和关系。为了解决这些问题,我们提出了一个新的预培训模型,该模型分别从图书中学习实体和关系的表示形式,并分别在文本中跨越跨度。通过使用SPAN模块有效地编码跨度,我们的模型可以代表实体及其关系,但所需的参数比现有模型更少。我们通过从Wikipedia中提取的知识图对我们的模型进行了预训练,并在广泛的监督和无监督的信息提取任务上进行了测试。结果表明,我们的模型比基线学习对实体和关系的表现更好,而在监督的设置中,微调我们的模型始终优于罗伯塔,并在信息提取任务上取得了竞争成果。
translated by 谷歌翻译
知识增强的预训练预审语言模型(Keplms)是预先接受的模型,具有从知识图中注入的关系三元组,以提高语言理解能力。为了保证有效的知识注入,之前的研究将模型与知识编码器集成,以表示从知识图表中检索的知识。知识检索和编码的操作带来了重要的计算负担,限制了在需要高推理速度的现实应用程序中使用这些模型。在本文中,我们提出了一种名为DKPLM的新型KEPLM,其在预训练,微调和推理阶段进行了预先训练的语言模型的知识注射过程,这有助于KEPLMS在现实世界场景中的应用。具体而言,我们首先检测知识感知的长尾实体作为知识注射的目标,增强了Keplms的语义理解能力,避免注入冗余信息。长尾实体的嵌入式被相关知识三元组形成的“伪令牌表示”取代。我们进一步设计了用于预培训的关系知识解码任务,以强制模型通过关系三重重建来真正了解注入的知识。实验表明,我们的模型在零拍摄知识探测任务和多种知识意识语言理解任务中显着优于其他KEPLS。我们进一步表明,由于分解机制,DKPLM具有比其他竞争模型更高的推理速度。
translated by 谷歌翻译
We present Relational Sentence Embedding (RSE), a new paradigm to further discover the potential of sentence embeddings. Prior work mainly models the similarity between sentences based on their embedding distance. Because of the complex semantic meanings conveyed, sentence pairs can have various relation types, including but not limited to entailment, paraphrasing, and question-answer. It poses challenges to existing embedding methods to capture such relational information. We handle the problem by learning associated relational embeddings. Specifically, a relation-wise translation operation is applied to the source sentence to infer the corresponding target sentence with a pre-trained Siamese-based encoder. The fine-grained relational similarity scores can be computed from learned embeddings. We benchmark our method on 19 datasets covering a wide range of tasks, including semantic textual similarity, transfer, and domain-specific tasks. Experimental results show that our method is effective and flexible in modeling sentence relations and outperforms a series of state-of-the-art sentence embedding methods. https://github.com/BinWang28/RSE
translated by 谷歌翻译
近年来,人们对少量知识图(FKGC)的兴趣日益增加,该图表旨在推断出关于该关系的一些参考三元组,从而推断出不见了的查询三倍。现有FKGC方法的主要重点在于学习关系表示,可以反映查询和参考三元组共享的共同信息。为此,这些方法从头部和尾部实体的直接邻居中学习实体对表示,然后汇总参考实体对的表示。但是,只有从直接邻居那里学到的实体对代表可能具有较低的表现力,当参与实体稀疏直接邻居或与其他实体共享一个共同的当地社区。此外,仅仅对头部和尾部实体的语义信息进行建模不足以准确推断其关系信息,尤其是当它们具有多个关系时。为了解决这些问题,我们提出了一个特定于关系的上下文学习(RSCL)框架,该框架利用了三元组的图形上下文,以学习全球和本地关系特定的表示形式,以使其几乎没有相关关系。具体而言,我们首先提取每个三倍的图形上下文,这可以提供长期实体关系依赖性。为了编码提取的图形上下文,我们提出了一个分层注意网络,以捕获三元组的上下文信息并突出显示实体的有价值的本地邻里信息。最后,我们设计了一个混合注意聚合器,以评估全球和本地级别的查询三元组的可能性。两个公共数据集的实验结果表明,RSCL的表现优于最先进的FKGC方法。
translated by 谷歌翻译
Knowledge graph embedding (KGE), which maps entities and relations in a knowledge graph into continuous vector spaces, has achieved great success in predicting missing links in knowledge graphs. However, knowledge graphs often contain incomplete triples that are difficult to inductively infer by KGEs. To address this challenge, we resort to analogical inference and propose a novel and general self-supervised framework AnKGE to enhance KGE models with analogical inference capability. We propose an analogical object retriever that retrieves appropriate analogical objects from entity-level, relation-level, and triple-level. And in AnKGE, we train an analogy function for each level of analogical inference with the original element embedding from a well-trained KGE model as input, which outputs the analogical object embedding. In order to combine inductive inference capability from the original KGE model and analogical inference capability enhanced by AnKGE, we interpolate the analogy score with the base model score and introduce the adaptive weights in the score function for prediction. Through extensive experiments on FB15k-237 and WN18RR datasets, we show that AnKGE achieves competitive results on link prediction task and well performs analogical inference.
translated by 谷歌翻译
Analogical reasoning is fundamental to human cognition and holds an important place in various fields. However, previous studies mainly focus on single-modal analogical reasoning and ignore taking advantage of structure knowledge. Notably, the research in cognitive psychology has demonstrated that information from multimodal sources always brings more powerful cognitive transfer than single modality sources. To this end, we introduce the new task of multimodal analogical reasoning over knowledge graphs, which requires multimodal reasoning ability with the help of background knowledge. Specifically, we construct a Multimodal Analogical Reasoning dataSet (MARS) and a multimodal knowledge graph MarKG. We evaluate with multimodal knowledge graph embedding and pre-trained Transformer baselines, illustrating the potential challenges of the proposed task. We further propose a novel model-agnostic Multimodal analogical reasoning framework with Transformer (MarT) motivated by the structure mapping theory, which can obtain better performance.
translated by 谷歌翻译
Knowledge graphs (KG) have served as the key component of various natural language processing applications. Commonsense knowledge graphs (CKG) are a special type of KG, where entities and relations are composed of free-form text. However, previous works in KG completion and CKG completion suffer from long-tail relations and newly-added relations which do not have many know triples for training. In light of this, few-shot KG completion (FKGC), which requires the strengths of graph representation learning and few-shot learning, has been proposed to challenge the problem of limited annotated data. In this paper, we comprehensively survey previous attempts on such tasks in the form of a series of methods and applications. Specifically, we first introduce FKGC challenges, commonly used KGs, and CKGs. Then we systematically categorize and summarize existing works in terms of the type of KGs and the methods. Finally, we present applications of FKGC models on prediction tasks in different areas and share our thoughts on future research directions of FKGC.
translated by 谷歌翻译
事实证明,将先验知识纳入预训练的语言模型中对知识驱动的NLP任务有效,例如实体键入和关系提取。当前的培训程序通常通过使用知识掩盖,知识融合和知识更换将外部知识注入模型。但是,输入句子中包含的事实信息尚未完全开采,并且尚未严格检查注射的外部知识。结果,无法完全利用上下文信息,并将引入额外的噪音,或者注入的知识量受到限制。为了解决这些问题,我们提出了MLRIP,该MLRIP修改了Ernie-Baidu提出的知识掩盖策略,并引入了两阶段的实体替代策略。进行全面分析的广泛实验说明了MLRIP在军事知识驱动的NLP任务中基于BERT的模型的优势。
translated by 谷歌翻译
在“知识图”(kgs)的表示领域中,超级关系的事实由主要三重和几个辅助属性描述组成,这被认为比基于三重的事实更全面,更具体。但是,由于代表实体之间的隶属关系的层次结构削弱,因此,单个视图中现有的超相关KG嵌入方法受到限制。为了打破这一限制,我们提出了一个双视性超相关kg(DH-kg)结构,该结构包含实体的超相关实例视图,以及对从实体到共同模型超相关的概念的超相关本体论视图和分层信息。在本文中,我们首先定义了DH-KG上的链接预测和实体键入任务,并根据医疗数据构建了两个DH-KG数据集,即从Wikidata和HTDM中提取的JW44K-6K。此外,我们根据Gran编码器,HGNN和联合学习提出了DH-KG嵌入模型DHGE。实验结果表明,DHGE在DH-KG上的表现优于基线模型。我们还提供了该技术在高血压药物领域中应用的示例。我们的模型和数据集公开可用。
translated by 谷歌翻译
知识图嵌入(KGE)旨在将实体和关系映射到低维空间,并成为知识图完成的\ textit {de-facto}标准。大多数现有的KGE方法都受到稀疏挑战的困扰,在这种挑战中,很难预测在知识图中频繁的实体。在这项工作中,我们提出了一个新颖的框架KRACL,以减轻具有图表和对比度学习的KG中广泛的稀疏性。首先,我们建议知识关系网络(KRAT)通过同时将相邻的三元组投射到不同的潜在空间,并通过注意机制共同汇总信息来利用图形上下文。 KRAT能够捕获不同上下文三联的微妙的语义信息和重要性,并利用知识图中的多跳信息。其次,我们通过将对比度损失与跨熵损失相结合,提出知识对比损失,这引入了更多的负样本,从而丰富了对稀疏实体的反馈。我们的实验表明,KRACL在各种标准知识基准中取得了卓越的结果,尤其是在WN18RR和NELL-995上,具有大量低级内实体。广泛的实验还具有KRACL在处理稀疏知识图和鲁棒性三元组的鲁棒性方面的有效性。
translated by 谷歌翻译
知识图完成(KGC)最近已扩展到多个知识图(kg)结构,启动了新的研究方向,例如静态kgc,颞kgc和少数kgc。以前的作品通常设计了KGC模型与特定的图形结构紧密结合,这不可避免地会导致两个缺点:1)结构特异性KGC模型是互不兼容的; 2)现有的KGC方法不适合新兴KG。在本文中,我们提出了KG-S2S,即SEQ2SEQ生成框架,可以通过将KG事实的表示形式统一为“平坦”文本,无论其原始形式如何,可以通过将KG事实的表示来解决不同的语言图形结构。为了纠正“平面”文本的KG结构信息损失,我们进一步改善了实体和关系的输入表示,以及KG-S2中的推理算法。五个基准测试的实验表明,KG-S2S的表现优于许多竞争基线,从而创造了新的最新性能。最后,我们分析了KG-S2S在不同关系和非实体世代上的能力。
translated by 谷歌翻译
学习知识图的嵌入对人工智能至关重要,可以使各种下游应用受益,例如推荐和问题回答。近年来,已经提出了许多研究努力,以嵌入知识图形。然而,最先前的知识图形嵌入方法忽略不同三元组中的相关实体和实体关系耦合之间的语义相似性,因为它们与评分函数分别优化每个三倍。为了解决这个问题,我们提出了一个简单但有效的对比学习框架,用于知识图形嵌入,可以缩短不同三元组中相关实体和实体关系耦合的语义距离,从而提高知识图形嵌入的表现力。我们在三个标准知识图形基准上评估我们提出的方法。值得注意的是,我们的方法可以产生一些新的最先进的结果,在WN18RR数据集中实现51.2%的MRR,46.8%HITS @ 1,59.1%的MRR,51.8%在YAGO3-10数据集中击打@ 1 。
translated by 谷歌翻译