荧光显微镜是一直是观察胚胎(体内)生长的长期成像随时间的重要工具。然而,累积暴露是对如此敏感的实时样本的光毒性。虽然像光片荧光显微镜(LSFM)这样的技术允许减少曝光,但它不太适用于深度成像模型。其他计算技术是计算昂贵的并且通常缺乏恢复质量。为了解决这一挑战,可以使用各种低剂量成像技术来实现使用轴向(Z轴)的少量切片实现3D体积重建;但是,它们通常缺乏恢复质量。而且,在轴向上获取致密图像(具有小步骤)是计算昂贵的。为了解决这一挑战,我们介绍了一种基于压缩的感测(CS)方法来完全重建具有相同信噪比(SNR)的3D卷,其具有小于励磁剂量的一半。我们展示了该理论并通过实验验证了这种方法。为了证明我们的技术,我们在斑马鱼胚脊髓(30um厚度)中捕获RFP标记神经元的3D体积,使用共聚焦显微镜轴向采样0.1um。从结果中,我们观察到基于CS的方法从整个堆叠光学部分的小于20%的高于20%实现精确的3D体积重建。在该工作中的开发的基于CS的方法可以容易地应用于其他深度成像模态,例如双光子和光板显微镜,其中还原样品毒性是一个关键挑战。
translated by 谷歌翻译
In this work, we propose a novel image reconstruction framework that directly learns a neural implicit representation in k-space for ECG-triggered non-Cartesian Cardiac Magnetic Resonance Imaging (CMR). While existing methods bin acquired data from neighboring time points to reconstruct one phase of the cardiac motion, our framework allows for a continuous, binning-free, and subject-specific k-space representation.We assign a unique coordinate that consists of time, coil index, and frequency domain location to each sampled k-space point. We then learn the subject-specific mapping from these unique coordinates to k-space intensities using a multi-layer perceptron with frequency domain regularization. During inference, we obtain a complete k-space for Cartesian coordinates and an arbitrary temporal resolution. A simple inverse Fourier transform recovers the image, eliminating the need for density compensation and costly non-uniform Fourier transforms for non-Cartesian data. This novel imaging framework was tested on 42 radially sampled datasets from 6 subjects. The proposed method outperforms other techniques qualitatively and quantitatively using data from four and one heartbeat(s) and 30 cardiac phases. Our results for one heartbeat reconstruction of 50 cardiac phases show improved artifact removal and spatio-temporal resolution, leveraging the potential for real-time CMR.
translated by 谷歌翻译
图像去噪是许多领域下游任务的先决条件。低剂量和光子计数计算断层扫描(CT)去噪可以在最小化辐射剂量下优化诊断性能。监督深层去噪方法是流行的,但需要成对的清洁或嘈杂的样本通常在实践中不可用。受独立噪声假设的限制,电流无监督的去噪方法不能处理与CT图像中的相关噪声。在这里,我们提出了一种基于类似的类似性的无人监督的无监督的深度去噪方法,称为Coxing2Sim,以非局部和非线性方式起作用,不仅抑制独立而且还具有相关的噪音。从理论上讲,噪声2SIM在温和条件下渐近相当于监督学习方法。通过实验,Nosie2SIM从嘈杂的低剂量CT和光子计数CT图像中的内在特征,从视觉上,定量和统计上有效地或甚至优于实际数据集的监督学习方法。 Coke2Sim是一般无监督的去噪方法,在不同的应用中具有很大的潜力。
translated by 谷歌翻译
Supervised Deep-Learning (DL)-based reconstruction algorithms have shown state-of-the-art results for highly-undersampled dynamic Magnetic Resonance Imaging (MRI) reconstruction. However, the requirement of excessive high-quality ground-truth data hinders their applications due to the generalization problem. Recently, Implicit Neural Representation (INR) has appeared as a powerful DL-based tool for solving the inverse problem by characterizing the attributes of a signal as a continuous function of corresponding coordinates in an unsupervised manner. In this work, we proposed an INR-based method to improve dynamic MRI reconstruction from highly undersampled k-space data, which only takes spatiotemporal coordinates as inputs. Specifically, the proposed INR represents the dynamic MRI images as an implicit function and encodes them into neural networks. The weights of the network are learned from sparsely-acquired (k, t)-space data itself only, without external training datasets or prior images. Benefiting from the strong implicit continuity regularization of INR together with explicit regularization for low-rankness and sparsity, our proposed method outperforms the compared scan-specific methods at various acceleration factors. E.g., experiments on retrospective cardiac cine datasets show an improvement of 5.5 ~ 7.1 dB in PSNR for extremely high accelerations (up to 41.6-fold). The high-quality and inner continuity of the images provided by INR has great potential to further improve the spatiotemporal resolution of dynamic MRI, without the need of any training data.
translated by 谷歌翻译
Dynamic magnetic resonance image reconstruction from incomplete k-space data has generated great research interest due to its capability to reduce scan time. Never-theless, the reconstruction problem is still challenging due to its ill-posed nature. Recently, diffusion models espe-cially score-based generative models have exhibited great potential in algorithm robustness and usage flexi-bility. Moreover, the unified framework through the variance exploding stochastic differential equation (VE-SDE) is proposed to enable new sampling methods and further extend the capabilities of score-based gener-ative models. Therefore, by taking advantage of the uni-fied framework, we proposed a k-space and image Du-al-Domain collaborative Universal Generative Model (DD-UGM) which combines the score-based prior with low-rank regularization penalty to reconstruct highly under-sampled measurements. More precisely, we extract prior components from both image and k-space domains via a universal generative model and adaptively handle these prior components for faster processing while maintaining good generation quality. Experimental comparisons demonstrated the noise reduction and detail preservation abilities of the proposed method. Much more than that, DD-UGM can reconstruct data of differ-ent frames by only training a single frame image, which reflects the flexibility of the proposed model.
translated by 谷歌翻译
捕获场景的空间和角度信息的光场(LF)成像无疑是有利于许多应用。尽管已经提出了用于LF采集的各种技术,但是在角度和空间上实现的既仍然是技术挑战。本文,提出了一种基于学习的方法,其应用于3D末面图像(EPI)以重建高分辨率LF。通过2级超分辨率框架,所提出的方法有效地解决了各种LF超分辨率(SR)问题,即空间SR,Angular SR和角空间SR。虽然第一阶段向Up-Sample EPI体积提供灵活的选择,但是由新型EPI体积的细化网络(EVRN)组成的第二阶段,基本上提高了高分辨率EPI体积的质量。从7个发布的数据集的90个挑战合成和实际灯田场景的广泛评估表明,所提出的方法优于空间和角度超分辨率问题的大型延伸的最先进的方法,即平均值峰值信号到噪声比为2.0 dB,1.4 dB和3.14 dB的空间SR $ \ Times 2 $,Spatial SR $ \ Times 4 $和Angular SR。重建的4D光场展示了所有透视图像的平衡性能分布,与先前的作品相比,卓越的视觉质量。
translated by 谷歌翻译
强度衍射断层扫描(IDT)是指用于从一组仅2D强度测量的样品成像样品的3D折射率(RI)分布的一类光学显微镜技术。由于相位信息的丢失和缺失的锥体问题,无伪影RI地图的重建是IDT的一个基本挑战。神经领域(NF)最近成为一种新的深度学习方法(DL),用于学习物理领域的连续表示。 NF使用基于坐标的神经网络来表示该场,通过将空间坐标映射到相应的物理量,在我们的情况下,复杂价值的折射率值。我们将DEPAF作为第一种基于NF的IDT方法,可以从仅强度和有限角度的测量值中学习RI体积的高质量连续表示。 DECAF中的表示形式是通过使用IDT向前模型直接从测试样品的测量值中学到的,而无需任何地面真相图。我们对模拟和实验生物学样品进行定性和定量评估DECAF。我们的结果表明,DECAF可以生成高对比度和无伪影RI图,并导致MSE超过现有方法的2.1倍。
translated by 谷歌翻译
深度学习方法已成为重建MR重建的最新采样的状态。特别是对于地面真理不可行或不可能的情况,要获取完全采样的数据,重建的自我监督的机器学习方法正在越来越多地使用。但是,在验证此类方法及其普遍性的验证中的潜在问题仍然没有得到充实的态度。在本文中,我们研究了自制算法验证未采样MR图像的重要方面:对前瞻性重建的定量评估,前瞻性和回顾性重建之间的潜在差异,常用的定量衡量标准的适用性和普遍性。研究了两种基于自我监督的denoising和先验的深层图像的自我监督算法。将这些方法与使用体内和幻影数据的最小二乘拟合以及压缩感测重建进行比较。它们的推广性通过前瞻性采样的数据与培训不同的数据进行了测试。我们表明,相对于回顾性重建/地面真理,前瞻性重建可能表现出严重的失真。此外,与感知度量相比,与像素定量指标的定量指标可能无法准确捕获感知质量的差异。此外,所有方法均显示出泛化的潜力。然而,与其他变化相比,概括性的影响更大。我们进一步表明,无参考图像指标与人类对图像质量的评级很好地对应,以研究概括性。最后,我们证明了经过调整的压缩感测重建和学习的DeNoising在所有数据上都相似地执行。
translated by 谷歌翻译
基于深度学习的解决方案正在为各种应用程序成功实施。最值得注意的是,临床用例已增加了兴趣,并且是过去几年提出的一些尖端数据驱动算法背后的主要驱动力。对于诸如稀疏视图重建等应用,其中测量数据的量很少,以使获取时间短而且辐射剂量较低,降低了串联的伪像,促使数据驱动的DeNoINEDENO算法的开发,其主要目标是获得获得的主要目标。只有一个全扫描数据的子集诊断可行的图像。我们提出了WNET,这是一个数据驱动的双域denoising模型,其中包含用于稀疏视图deNoising的可训练的重建层。两个编码器 - 模型网络同时在正式和重建域中执行deno,而实现过滤后的反向投影算法的第三层则夹在前两种之间,并照顾重建操作。我们研究了该网络在稀疏视图胸部CT扫描上的性能,并突出显示了比更传统的固定层具有可训练的重建层的额外好处。我们在两个临床相关的数据集上训练和测试我们的网络,并将获得的结果与三种不同类型的稀疏视图CT CT DeNoisis和重建算法进行了比较。
translated by 谷歌翻译
在几乎不可预测且通常严重的主题运动的情况下获得的多个MR Slices的胎儿大脑的体积重建是一项具有挑战性的任务,对切片转换的初始化非常敏感。我们建议使用经过合成转换数据训练的变压器提出了一种新型的切片到体积的注册方法,该数据将MR Slices的多个堆栈模拟为序列。通过注意机制,我们的模型会自动检测切片之间的相关性,并使用来自其他切片的信息预测一个切片的转换。我们还估计了基础3D卷,以帮助切片到体积的注册,并交替更新音量和转换以提高准确性。合成数据的结果表明,与现有的最新方法相比,我们的方法可实现较低的注册误差和更好的重建质量。还进行了使用现实世界中MRI数据的实验,以证明该模型在严重的胎儿运动下提高3D重建质量的能力。
translated by 谷歌翻译
We propose a deep learning method for three-dimensional reconstruction in low-dose helical cone-beam computed tomography. We reconstruct the volume directly, i.e., not from 2D slices, guaranteeing consistency along all axes. In a crucial step beyond prior work, we train our model in a self-supervised manner in the projection domain using noisy 2D projection data, without relying on 3D reference data or the output of a reference reconstruction method. This means the fidelity of our results is not limited by the quality and availability of such data. We evaluate our method on real helical cone-beam projections and simulated phantoms. Our reconstructions are sharper and less noisy than those of previous methods, and several decibels better in quantitative PSNR measurements. When applied to full-dose data, our method produces high-quality results orders of magnitude faster than iterative techniques.
translated by 谷歌翻译
磁共振(MR)图像重建来自高度缺点$ K $ -space数据在加速MR成像(MRI)技术中至关重要。近年来,基于深度学习的方法在这项任务中表现出很大的潜力。本文提出了一种学习的MR图像重建半二次分割算法,并在展开的深度学习网络架构中实现算法。我们比较我们提出的方法对针对DC-CNN和LPDNET的公共心先生数据集的性能,我们的方法在定量结果和定性结果中表现出其他方法,具有更少的模型参数和更快的重建速度。最后,我们扩大了我们的模型,实现了卓越的重建质量,并且改善为1.76美元$ 276 $ 274美元的LPDNET以5美元\倍率为5美元的峰值信噪比。我们的方法的代码在https://github.com/hellopipu/hqs-net上公开使用。
translated by 谷歌翻译
基于深度学习的脑磁共振成像(MRI)重建方法有可能加速MRI采集过程。尽管如此,科学界缺乏适当的基准,以评估高分辨率大脑图像的MRI重建质量,并评估这些所提出的算法在存在小而且预期的数据分布班次存在下的表现。多线圈磁共振图像(MC-MRI)重建挑战提供了一种基准,其目的在于使用高分辨率,三维,T1加权MRI扫描的大型数据集。挑战有两个主要目标:1)比较该数据集和2)上的不同的MRI重建模型,并评估这些模型的概括性,以通过不同数量的接收器线圈获取的数据。在本文中,我们描述了挑战实验设计,并总结了一系列基线和艺术脑MRI重建模型的结果。我们提供有关目前MRI重建最先进的相关比较信息,并突出挑战在更广泛的临床采用之前获得所需的普遍模型。 MC-MRI基准数据,评估代码和当前挑战排行榜可公开可用。它们为脑MRI重建领域的未来发展提供了客观性能评估。
translated by 谷歌翻译
计算机断层扫描(CT)使用从身体周围的传感器取出的X射线测量以产生人体的断层图像。如果X射线数据充分采样和高质量,则可以使用传统的重建算法;然而,诸如将剂量减少给患者的问题,或数据采集的几何限制可能导致低质量或不完整的数据。由于噪声和其他伪像,使用传统方法从这些数据重建的图像具有差的质量。本研究的目的是训练单个神经网络,从嘈杂或不完全CT扫描数据重建高质量CT图像,包括低剂量,稀疏视图和有限的角度场景。为了完成这项任务,我们将生成的对冲网络(GaN)作为信号训练,以与CT数据的迭代同步代数重建技术(SART)结合使用。网络包括自我关注块,以模拟数据中的远程依赖性。我们将我们的自我关注GaN进行CT图像重建,包括几种最先进的方法,包括去噪循环GaN,Circle GaN和总变化的校长算法。我们的方法被证明是可以相当的整体性能来圈出GaN,同时优于其他两种方法。
translated by 谷歌翻译
最近,未经训练的神经网络(UNNS)显示了在随机采样轨迹上对MR图像重建的令人满意的性能,而无需使用其他全面采样训练数据。但是,现有的基于UNN的方法并未完全使用MR图像物理先验,导致某些常见情况(例如部分傅立叶,常规采样等)的性能差,并且缺乏重建准确性的理论保证。为了弥合这一差距,我们使用特殊设计的UNN提出了一种保障的K空间插值方法,该方法使用特殊设计的UNN,该方法由MR图像的三个物理先验(或K空间数据)驱动,包括稀疏,线圈灵敏度平稳性和相位平滑度。我们还证明,所提出的方法保证了插值K空间数据准确性的紧密界限。最后,消融实验表明,所提出的方法比现有传统方法更准确地表征了MR图像的物理先验。此外,在一系列常用的采样轨迹下,实验还表明,所提出的方法始终优于传统的平行成像方法和现有的UNN,甚至超过了最先进的监督训练的K空间深度学习方法案例。
translated by 谷歌翻译
在过去的几年中,提出了多种基于深神经网络(DNN)的方法,以解决来自未取消采样的“ K-Space”(傅立叶域)数据的挑战性不足的反向问题。然而,反对采集过程中的变化和解剖学分布的不稳定性表明,与其经典的对应物相比,DNN体系结构对相关物理模型的概括不佳。较差的概括有效地排除了DNN适用于临床环境中不足采样的MRI重建。我们通过引入物理培养的DNN体系结构和培训方法来提高DNN方法的泛化MRI重建能力。除了模型体系结构中观察到的数据外,我们的体系结构还编码底面采样掩码,并采用适当的培训方法,该方法使用与各种无底采样掩码生成的数据一起鼓励模型概括了未散布的MRI重建问题。我们通过对公开可用的快速MRI数据集进行了广泛的实验,证明了我们的方法的附加价值。我们的物理提出的方法达到了增强的概括能力,这使得与获得的稳健性和解剖学分布的变化相比,尤其是在病理区域中,与香草DNN方法和DNN进行了显着提高,并在病理区域中进行了显着提高,并且受过培训的DNN训练,并接受了强烈的掩盖掩模的增强。接受训练的模型和代码以复制我们的实验,将在接受后用于研究目的。
translated by 谷歌翻译
本文旨在去除从稀疏 - 采样{4d}光场产生的整个焦点堆的锯齿效果,同时保持所有焦层的一致性。我们首先探讨侧侧侧叠层切片的结构特征及其相应的频域表示,即焦堆谱(FSS)。我们观察到,FSS的能量分布总是在不同的角度采样率下驻留在相同的三角形区域内,另外,点扩展功能(PSF)的连续性在FSS中固有地保持。基于这两种观察,我们提出了一种基于学习的FSS重建方法,用于在整个焦点堆叠上移除一次性混叠。此外,提出了一种新的共轭 - 对称损失函数来优化。与以前的作品相比,我们的方法避免了明确的深度估计,并且可以处理具有挑战性的大差异方案。合成和真实光场数据集的实验结果显示了不同场景和各种角度采样率的提出方法的优势。
translated by 谷歌翻译
CT和MRI是两种广泛使用的临床成像方式,用于非侵入性诊断。然而,这两种方式都有一定的问题。 CT使用有害电离辐射,MRI患有缓慢的采集速度。欠采样可以解决这两个问题,例如稀疏抽样。然而,这种向下采样的数据导致降低分辨率并引入人工制品。已经提出了几种技术,包括基于深度的学习方法,以重建此类数据。然而,这两个方式的欠采样重建问题总是被认为是两个不同的问题,并通过不同的研究工作分开解决。本文通过在径向MRI上应用傅立叶变换的预处理来实现稀疏CT和缺口MRI重建的统一解决方案,然后使用SCOMAGE ups采样与滤波后投影结合使用SCOMAGE Cups采样来实现的基于傅里叶变换的预处理。原始网络是一种基于深度学习的方法,用于重建稀疏采样的CT数据。本文介绍了原始 - 双工UNET,从精度和重建速度方面提高了原始双网络。所提出的方法导致平均SSSIM为0.932,同时对风扇束几何进行稀疏CT重建,其稀疏水平为16,实现了对先前模型的统计上显着的改进,这导致0.919。此外,所提出的模型导致0.903和0.957平均SSIM,同时重建具有16-统计上显着改善的加速因子,在原始模型上重建了缺乏采样的脑和腹部MRI数据,这导致0.867和0.949。最后,本文表明,所提出的网络不仅提高了整体图像质量,而且还提高了兴趣区域的图像质量;以及在针的存在下更好地推广。
translated by 谷歌翻译
由智能手机和中端相机捕获的照片的空间分辨率和动态范围有限,在饱和区域中未充满刺激的区域和颜色人工制品中的嘈杂响应。本文介绍了第一种方法(据我们所知),以重建高分辨率,高动态范围的颜色图像,这些颜色来自带有曝光括号的手持相机捕获的原始照相爆发。该方法使用图像形成的物理精确模型来结合迭代优化算法,用于求解相应的逆问题和学习的图像表示,以进行健壮的比对,并以前的自然图像。所提出的算法很快,与基于最新的学习图像恢复方法相比,内存需求较低,并且从合成但逼真的数据终止学习的特征。广泛的实验证明了其出色的性能,具有最多$ \ times 4 $的超分辨率因子在野外拍摄的带有手持相机的真实照片,以及对低光条件,噪音,摄像机摇动和中等物体运动的高度鲁棒性。
translated by 谷歌翻译
目的:开发一种适用于具有非平滑相位变化的扩散加权(DW)图像的鲁棒部分傅里叶(PF)重建算法。方法:基于展开的近端分裂算法,导出了一种神经网络架构,其在经常复卷卷积实现的数据一致性操作和正则化之间交替。为了利用相关性,在考虑到置换方面,共同重建相同切片的多重重复。该算法在60名志愿者的DW肝脏数据上培训,并回顾性和预期的不同解剖和分辨率的次样本数据评估。结果:该方法能够在定量措施以及感知图像质量方面具有显着优异地优于追溯子采样数据的传统PF技术。在这种情况下,发现重复的联合重建以及特定类型的经常性网络展开展开是有益的重建质量。在预期的PF采样数据上,所提出的方法使得DW成像能够在不牺牲图像分辨率或引入额外的伪影的情况下进行DW成像。或者,它可以用来对抗具有更高分辨率的获取的TE增加。此外,可以向展示训练集中的解剖学和对比度显示普遍性的脑数据。结论:这项工作表明,即使在易于相位变化的解剖中的强力PF因子中,DW数据的强大PF重建也是可行的。由于所提出的方法不依赖于阶段的平滑度前沿,而是使用学习的经常性卷积,因此可以避免传统PF方法的伪像。
translated by 谷歌翻译