开发对手挑战NLP系统的方法是提高模型性能和解释性的有前途的途径。在这里,我们描述了团队在第一个动态对抗数据收集(DADC)的任务1中“长角牛”的方法,该研讨会要求团队手动欺骗一个模型,以挖掘出挖掘的问题回答任务。我们的团队首先结束,模型错误率为62%。我们主张采用系统的,语言知情的方法来制定对抗性问题,并描述了试点实验的结果以及我们的官方提交。
translated by 谷歌翻译
我们介绍了作为创建高质量的,对抗机器阅读透明数据的注释,用于为动态对抗数据收集(DADC)的第一个研讨会的提取质量检查数据。DADC是一个新兴的数据收集范式,循环中都有模型和人类。我们设置了准实验注释设计,并对各组进行定量分析,这些分析量不同,这些注释者重点是成功的对抗攻击,成本分析和注释者置信度相关。鉴于我们数据集中的段落的不同主题,我们进一步对我们对任务的困难进行了定性分析,并以建议和建议对从事未来DADC任务和相关注释接口的人们可能有价值。
translated by 谷歌翻译
Humans gather information through conversations involving a series of interconnected questions and answers. For machines to assist in information gathering, it is therefore essential to enable them to answer conversational questions. We introduce CoQA, a novel dataset for building Conversational Question Answering systems. 1 Our dataset contains 127k questions with answers, obtained from 8k conversations about text passages from seven diverse domains. The questions are conversational, and the answers are free-form text with their corresponding evidence highlighted in the passage. We analyze CoQA in depth and show that conversational questions have challenging phenomena not present in existing reading comprehension datasets, e.g., coreference and pragmatic reasoning. We evaluate strong dialogue and reading comprehension models on CoQA. The best system obtains an F1 score of 65.4%, which is 23.4 points behind human performance (88.8%), indicating there is ample room for improvement. We present CoQA as a challenge to the community at https://stanfordnlp. github.io/coqa.
translated by 谷歌翻译
快捷方式学习的问题在NLP中广为人知,并且近年来一直是重要的研究重点。数据中的意外相关性使模型能够轻松地求解旨在表现出高级语言理解和推理能力的任务。在本调查论文中,我们关注机器阅读理解的领域(MRC),这是展示高级语言理解的重要任务,这也遭受了一系列快捷方式。我们总结了用于测量和减轻快捷方式的可用技术,并以捷径研究进一步进展的建议结论。最重要的是,我们强调了MRC中缓解快捷方式的两个主要问题:缺乏公共挑战集,有效和可重复使用的评估的必要组成部分以及在其他领域中缺乏某些缓解技术。
translated by 谷歌翻译
为了实现长文档理解的构建和测试模型,我们引入质量,具有中文段的多项选择QA DataSet,具有约5,000个令牌的平均长度,比典型的当前模型更长。与经过段落的事先工作不同,我们的问题是由阅读整个段落的贡献者编写和验证的,而不是依赖摘要或摘录。此外,只有一半的问题是通过在紧缩时间限制下工作的注释器来应答,表明略读和简单的搜索不足以一直表现良好。目前的模型在此任务上表现不佳(55.4%),并且落后于人类性能(93.5%)。
translated by 谷歌翻译
相同上下文的可能后果可能会因我们所指的情况而异。但是,当前在自然语言处理中的研究并不集中于多种可能情况下的常识性推理。本研究通过短篇小说文字提出与候选人答案相同的结尾的多个问题来构成这项任务。我们由此产生的数据集,可能的故事,包括超过1.3k的故事文本超过4.5k的问题。我们发现,即使是目前的强训练性语言模型也很难始终如一地回答问题,这强调了无监督环境中最高的准确性(60.2%)远远落后于人类准确性(92.5%)。通过与现有数据集进行比较,我们观察到数据集中的问题包含答案选项中的最小注释伪像。此外,我们的数据集还包括需要反事实推理的示例,以及需要读者的反应和虚构信息的示例,这表明我们的数据集可以作为对未来常识性推理的未来研究的挑战性测试。
translated by 谷歌翻译
问题回答(QA)是最重要的自然语言处理(NLP)任务之一。它旨在使用NLP技术根据大规模的非结构化语料库生成对给定问题的相应答案。随着深度学习的发展,正在提出越来越具有挑战性的质量检查数据集,并且许多用于解决它们的新方法也正在出现。在本文中,我们研究了在深度学习时代发布的有影响力的质量检查数据集。具体来说,我们首先引入两个最常见的质量检查任务 - 文本问题答案和视觉问题 - 分别涵盖最具代表性的数据集,然后给出质量检查研究的一些当前挑战。
translated by 谷歌翻译
自动问题应答(QA)系统的目的是以时间有效的方式向用户查询提供答案。通常在数据库(或知识库)或通常被称为语料库的文件集合中找到答案。在过去的几十年里,收购知识的扩散,因此生物医学领域的新科学文章一直是指数增长。因此,即使对于领域专家,也难以跟踪域中的所有信息。随着商业搜索引擎的改进,用户可以在某些情况下键入其查询并获得最相关的一小组文档,以及在某些情况下从文档中的相关片段。但是,手动查找所需信息或答案可能仍然令人疑惑和耗时。这需要开发高效的QA系统,该系统旨在为用户提供精确和精确的答案提供了生物医学领域的自然语言问题。在本文中,我们介绍了用于开发普通域QA系统的基本方法,然后彻底调查生物医学QA系统的不同方面,包括使用结构化数据库和文本集合的基准数据集和几种提出的方​​法。我们还探讨了当前系统的局限性,并探索潜在的途径以获得进一步的进步。
translated by 谷歌翻译
神经网络语言模型的最新进展表明,通过利用大规模自然语言数据中的语言关联来得出表达意义表示。这些潜在的格式塔表示已实现许多实际应用的最新性能。看来我们正处于经验得出强大而表达的可计算语义的途径。出现的一个关键问题是,仅语言数据才能使计算机能够理解有关物理世界的必要真相?必须关注这个问题,因为我们与智能机器的未来相互作用取决于我们的技术正确地表示和处理人类通常观察到的概念(对象,属性和过程)。在审查了现有协议之后,这项工作的目的是使用新颖且严格控制的推理测试探索这个问题,并突出显示哪些模型可能直接从纯语言数据中学习。
translated by 谷歌翻译
数据增强是自然语言处理(NLP)模型的鲁棒性评估的重要组成部分,以及增强他们培训的数据的多样性。在本文中,我们呈现NL-Cogmenter,这是一种新的参与式Python的自然语言增强框架,它支持创建两个转换(对数据的修改)和过滤器(根据特定功能的数据拆分)。我们描述了框架和初始的117个变换和23个过滤器,用于各种自然语言任务。我们通过使用其几个转换来分析流行自然语言模型的鲁棒性来证明NL-Upmenter的功效。基础架构,Datacards和稳健性分析结果在NL-Augmenter存储库上公开可用(\ url {https://github.com/gem-benchmark/nl-augmenter})。
translated by 谷歌翻译
大规模的预训练语言模型在广泛的自然语言理解(NLU)任务中取得了巨大的成功,甚至超过人类性能。然而,最近的研究表明,这些模型的稳健性可能受到精心制作的文本对抗例子的挑战。虽然已经提出了几个单独的数据集来评估模型稳健性,但仍缺少原则和全面的基准。在本文中,我们呈现对抗性胶水(AdvGlue),这是一个新的多任务基准,以定量和彻底探索和评估各种对抗攻击下现代大规模语言模型的脆弱性。特别是,我们系统地应用14种文本对抗的攻击方法来构建一个粘合的援助,这是由人类进一步验证的可靠注释。我们的调查结果总结如下。 (i)大多数现有的对抗性攻击算法容易发生无效或暧昧的对手示例,其中大约90%的含量改变原始语义含义或误导性的人的注册人。因此,我们执行仔细的过滤过程来策划高质量的基准。 (ii)我们测试的所有语言模型和强大的培训方法在AdvGlue上表现不佳,差价远远落后于良性准确性。我们希望我们的工作能够激励开发新的对抗攻击,这些攻击更加隐身,更加统一,以及针对复杂的对抗性攻击的新强大语言模型。 Advglue在https://adversarialglue.github.io提供。
translated by 谷歌翻译
For natural language understanding (NLU) technology to be maximally useful, it must be able to process language in a way that is not exclusive to a single task, genre, or dataset. In pursuit of this objective, we introduce the General Language Understanding Evaluation (GLUE) benchmark, a collection of tools for evaluating the performance of models across a diverse set of existing NLU tasks. By including tasks with limited training data, GLUE is designed to favor and encourage models that share general linguistic knowledge across tasks. GLUE also includes a hand-crafted diagnostic test suite that enables detailed linguistic analysis of models. We evaluate baselines based on current methods for transfer and representation learning and find that multi-task training on all tasks performs better than training a separate model per task. However, the low absolute performance of our best model indicates the need for improved general NLU systems.
translated by 谷歌翻译
In the last year, new models and methods for pretraining and transfer learning have driven striking performance improvements across a range of language understanding tasks. The GLUE benchmark, introduced a little over one year ago, offers a single-number metric that summarizes progress on a diverse set of such tasks, but performance on the benchmark has recently surpassed the level of non-expert humans, suggesting limited headroom for further research. In this paper we present SuperGLUE, a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, a software toolkit, and a public leaderboard. SuperGLUE is available at super.gluebenchmark.com.
translated by 谷歌翻译
本文提出了一种基于答案设置编程(ASP)的方法,用于代表自然语言文本生成的知识。文本中的知识是使用Neo Davidsonian的形式主义建模的,然后将其表示为答案集计划。相关的致辞知识另外导入Wordnet等资源,并在ASP中表示。然后可以使用所产生的知识库来在ASP系统的帮助下执行推理。这种方法可以促进许多自然语言任务,如自动问题应答,文本摘要和自动化问题。基于ASP的技术表示,例如默认推理,分层知识组织,默认值等的首选项,用于模拟完成这些任务所需的致辞推理方法。在本文中,我们描述了我们开发的CaspR系统,以自动解决在给出英语文本时回答自然语言问题的任务。 CASPR可以被视为一个系统,通过“了解”文本并已在队列数据集上进行了测试,具有有希望的结果。
translated by 谷歌翻译
We introduce a new large-scale NLI benchmark dataset, collected via an iterative, adversarial human-and-model-in-the-loop procedure. We show that training models on this new dataset leads to state-of-the-art performance on a variety of popular NLI benchmarks, while posing a more difficult challenge with its new test set. Our analysis sheds light on the shortcomings of current state-of-theart models, and shows that non-expert annotators are successful at finding their weaknesses. The data collection method can be applied in a never-ending learning scenario, becoming a moving target for NLU, rather than a static benchmark that will quickly saturate.
translated by 谷歌翻译
Visual understanding goes well beyond object recognition. With one glance at an image, we can effortlessly imagine the world beyond the pixels: for instance, we can infer people's actions, goals, and mental states. While this task is easy for humans, it is tremendously difficult for today's vision systems, requiring higher-order cognition and commonsense reasoning about the world. We formalize this task as Visual Commonsense Reasoning. Given a challenging question about an image, a machine must answer correctly and then provide a rationale justifying its answer.Next, we introduce a new dataset, VCR, consisting of 290k multiple choice QA problems derived from 110k movie scenes. The key recipe for generating non-trivial and highquality problems at scale is Adversarial Matching, a new approach to transform rich annotations into multiple choice questions with minimal bias. Experimental results show that while humans find VCR easy (over 90% accuracy), state-of-the-art vision models struggle (∼45%).To move towards cognition-level understanding, we present a new reasoning engine, Recognition to Cognition Networks (R2C), that models the necessary layered inferences for grounding, contextualization, and reasoning. R2C helps narrow the gap between humans and machines (∼65%); still, the challenge is far from solved, and we provide analysis that suggests avenues for future work.
translated by 谷歌翻译
Winograd架构挑战 - 一套涉及代词参考消歧的双句话,似乎需要使用致辞知识 - 是由2011年的赫克托勒维克斯提出的。到2019年,基于大型预先训练的变压器的一些AI系统基于语言模型和微调这些问题,精度优于90%。在本文中,我们审查了Winograd架构挑战的历史并评估了其重要性。
translated by 谷歌翻译
最近已被证明大型语言模型在各种任务集中获得合理的零射普通化(Brown等,2020)。它已经假设这是语言模型的隐式多任务学习的结果,在语言模型中的预押(Radford等,2019)。可以通过明确的多任务学习直接引起零拍常规化?为了以缩放测试这个问题,我们开发一个系统,以便轻松地将任何自然语言任务映射到人类可读的提示表单中。我们转换一组大量的监督数据集,每个数据集都有多个提示,具有不同的措辞。这些提示的数据集允许基准测试模型执行完全看不见的任务的能力。我们介绍了一个普拉克尔编码器 - 解码器模型(Raffel等,2020; Lester等,2021),覆盖各种任务。该模型在多个标准数据集中达到强大的零点性能,通常优于其尺寸的型号超过16倍。此外,我们的方法对来自Big-替补基准测试的任务子集具有强烈性能,优于其尺寸的6倍。所有提示和培训的型号都可以在https://github.com/ bigscience-workshop / protectsource / httpsource / https://huggingface.co/bigscience/t0pp。
translated by 谷歌翻译
最近的开放式域问题回答表明,新颖的测试问题之间的模型性能和那些在很大程度上与培训问题重叠的模型性能存在很大差异。然而,目前尚不清楚新颖的问题的哪些方面使他们成为挑战。在进行系统泛化的研究时,我们根据三个类别介绍和注释问题,这些类别测量了不同的水平和概括的种类:培训设定重叠,组成泛化(Comp-Gen)和新颖的实体概括(新实体)。在评估六个流行的参数和非参数模型时,我们发现,对于既定的自然问题和TriviaQA数据集,即使是Comp-Gen /新颖实体的最强的模型性能也是13.1 / 5.4%和9.6 / 1.5%,而与此相比降低对于完整的测试集 - 表示这些类型的问题所带来的挑战。此外,我们表明,虽然非参数模型可以相对良好地处理含有新颖实体的问题,但它们与那些需要组成泛化的问题斗争。最后,我们发现关键问题是:来自检索组件的级联错误,问题模式的频率和实体的频率。
translated by 谷歌翻译
We present the Stanford Question Answering Dataset (SQuAD), a new reading comprehension dataset consisting of 100,000+ questions posed by crowdworkers on a set of Wikipedia articles, where the answer to each question is a segment of text from the corresponding reading passage. We analyze the dataset to understand the types of reasoning required to answer the questions, leaning heavily on dependency and constituency trees. We build a strong logistic regression model, which achieves an F1 score of 51.0%, a significant improvement over a simple baseline (20%). However, human performance (86.8%) is much higher, indicating that the dataset presents a good challenge problem for future research. The dataset is freely available at https://stanford-qa.com.
translated by 谷歌翻译