大多数现有的复合面部表达识别(FER)方法依赖于用于训练的大型化合物表达数据。但是,收集此类数据是劳动密集型且耗时的。在本文中,我们解决了跨域少数学习(FSL)设置中的复合FER任务,该设置仅需要几个在目标域中的复合表达式样本。具体而言,我们提出了一个新型的级联分解网络(CDNET),该网络将基于顺序分解机制的几个学习到分解模块层叠,以获得可转移的特征空间。为了减轻我们任务中基本班级有限的过度拟合问题,部分正则化策略旨在有效利用情节培训和批处理培训的最佳功能。通过在多个基本表达数据集上进行类似任务的培训,CDNET了解了可以轻松适应以识别看不见的化合物表达式的学习能力。对利润和野外复合表达数据集进行的广泛实验证明了我们提出的CDNET与几种最先进的FSL方法的优越性。代码可在以下网址获得:https://github.com/zouxinyi0625/cdnet。
translated by 谷歌翻译
很少有视觉识别是指从一些标记实例中识别新颖的视觉概念。通过将查询表示形式与类表征进行比较以预测查询实例的类别,许多少数射击的视觉识别方法采用了基于公制的元学习范式。但是,当前基于度量的方法通常平等地对待所有实例,因此通常会获得有偏见的类表示,考虑到并非所有实例在总结了类级表示的实例级表示时都同样重要。例如,某些实例可能包含无代表性的信息,例如过多的背景和无关概念的信息,这使结果偏差。为了解决上述问题,我们提出了一个新型的基于公制的元学习框架,称为实例自适应类别表示网络(ICRL-net),以进行几次视觉识别。具体而言,我们开发了一个自适应实例重新平衡网络,具有在生成班级表示,通过学习和分配自适应权重的不同实例中的自适应权重时,根据其在相应类的支持集中的相对意义来解决偏见的表示问题。此外,我们设计了改进的双线性实例表示,并结合了两个新型的结构损失,即,阶层内实例聚类损失和阶层间表示区分损失,以进一步调节实例重估过程并完善类表示。我们对四个通常采用的几个基准测试:Miniimagenet,Tieredimagenet,Cifar-FS和FC100数据集进行了广泛的实验。与最先进的方法相比,实验结果证明了我们的ICRL-NET的优势。
translated by 谷歌翻译
很少有图像分类是一个具有挑战性的问题,旨在仅基于少量培训图像来达到人类的识别水平。少数图像分类的一种主要解决方案是深度度量学习。这些方法是,通过将看不见的样本根据距离的距离进行分类,可在强大的深神经网络中学到的嵌入空间中看到的样品,可以避免以少数图像分类的少数训练图像过度拟合,并实现了最新的图像表现。在本文中,我们提供了对深度度量学习方法的最新审查,以进行2018年至2022年的少量图像分类,并根据度量学习的三个阶段将它们分为三组,即学习功能嵌入,学习课堂表示和学习距离措施。通过这种分类法,我们确定了他们面临的不同方法和问题的新颖性。我们通过讨论当前的挑战和未来趋势进行了少量图像分类的讨论。
translated by 谷歌翻译
少量学习,特别是几秒钟的图像分类,近年来受到了越来越多的关注,并目睹了重大进展。最近的一些研究暗示表明,许多通用技术或“诀窍”,如数据增强,预训练,知识蒸馏和自我监督,可能大大提高了几次学习方法的性能。此外,不同的作品可以采用不同的软件平台,不同的训练计划,不同的骨干架构以及甚至不同的输入图像大小,使得公平的比较困难,从业者与再现性斗争。为了解决这些情况,通过在Pytorch中的同一单个代码库中重新实施17个最新的框架,提出了几次射门学习(Libfewshot)的全面图书馆。此外,基于libfewshot,我们提供多个基准数据集的全面评估,其中包含多个骨干架构,以评估不同培训技巧的常见缺陷和效果。此外,鉴于近期对必要性或未培训机制的必要性怀疑,我们的评估结果表明,特别是当与预训练相结合时,仍然需要这种机制。我们希望我们的工作不仅可以降低初学者的障碍,可以在几次学习上工作,而且还消除了非动力技巧的影响,促进了几枪学习的内在研究。源代码可从https://github.com/rl-vig/libfewshot获取。
translated by 谷歌翻译
少量分类旨在执行分类,因为只有利息类别的标记示例。尽管提出了几种方法,但大多数现有的几次射击学习(FSL)模型假设基础和新颖类是从相同的数据域中汲取的。在识别在一个看不见的域中的新型类数据方面,这成为域广义少量分类的更具挑战性的任务。在本文中,我们为域广义的少量拍摄分类提供了一个独特的学习框架,其中基类来自同质的多个源域,而要识别的新类是来自训练期间未见的目标域。通过推进元学习策略,我们的学习框架跨越多个源域利用数据来捕获域不变的功能,通过基于度量学习的机制跨越支持和查询数据来引入FSL能力。我们进行广泛的实验,以验证我们提出的学习框架和展示从小但同质源数据的效果,能够优选地对来自大规模的学习来执行。此外,我们为域广泛的少量分类提供了骨干模型的选择。
translated by 谷歌翻译
基于元学习的现有方法通过从(源域)基础类别的培训任务中学到的元知识来预测(目标域)测试任务的新颖类标签。但是,由于范围内可能存在较大的域差异,大多数现有作品可能无法推广到新颖的类别。为了解决这个问题,我们提出了一种新颖的对抗特征增强(AFA)方法,以弥合域间隙,以几乎没有学习。该特征增强旨在通过最大化域差异来模拟分布变化。在对抗训练期间,通过将增强特征(看不见的域)与原始域(可见域)区分开来学习域歧视器,而将域差异最小化以获得最佳特征编码器。所提出的方法是一个插件模块,可以轻松地基于元学习的方式将其集成到现有的几种学习方法中。在九个数据集上进行的广泛实验证明了我们方法对跨域几乎没有射击分类的优越性,与最新技术相比。代码可从https://github.com/youthhoo/afa_for_few_shot_learning获得
translated by 谷歌翻译
由顺序训练和元训练阶段组成的两阶段训练范式已广泛用于当前的几次学习(FSL)研究。这些方法中的许多方法都使用自我监督的学习和对比度学习来实现新的最新结果。但是,在FSL培训范式的两个阶段,对比度学习的潜力仍未得到充分利用。在本文中,我们提出了一个新颖的基于学习的框架,该框架将对比度学习无缝地整合到两个阶段中,以提高少量分类的性能。在预训练阶段,我们提出了特征向量与特征映射和特征映射与特征映射的形式的自我监督对比损失,该图形与特征映射使用全局和本地信息来学习良好的初始表示形式。在元训练阶段,我们提出了一种跨视图的情节训练机制,以对同一情节的两个不同视图进行最近的质心分类,并采用基于它们的距离尺度对比度损失。这两种策略迫使模型克服观点之间的偏见并促进表示形式的可转让性。在三个基准数据集上进行的广泛实验表明,我们的方法可以实现竞争成果。
translated by 谷歌翻译
很少有射击学习(FSL)旨在通过利用基本数据集的先验知识来识别只有几个支持样本的新奇查询。在本文中,我们考虑了FSL中的域移位问题,并旨在解决支持集和查询集之间的域间隙。不同于以前考虑基础和新颖类之间的域移位的跨域FSL工作(CD-FSL),新问题称为跨域跨集FSL(CDSC-FSL),不仅需要很少的学习者适应新的领域,但也要在每个新颖类中的不同领域之间保持一致。为此,我们提出了一种新颖的方法,即Stabpa,学习原型紧凑和跨域对准表示,以便可以同时解决域的转移和很少的学习学习。我们对分别从域和办公室数据集构建的两个新的CDCS-FSL基准进行评估。值得注意的是,我们的方法的表现优于多个详细的基线,例如,在域内,将5-shot精度提高了6.0点。代码可从https://github.com/wentaochen0813/cdcs-fsl获得
translated by 谷歌翻译
少量学习(FSL)是一个具有挑战性的任务,\ emph {i.e.},如何用少数例子识别新颖的类?基于预先训练的方法通过预先训练特征提取器,然后通过具有基于均值的原型的余弦最近邻分类来预测新颖类来有效地解决问题。然而,由于数据稀缺,通常的平均原型通常偏置。在本文中,我们试图通过将原型偏差视为原型优化问题来减少原型偏差。为此,我们提出了一种新颖的基于元学习的原型优化框架来纠正原型,\ emph {i.},引入元优化器以优化原型。虽然现有的元优化器也可以适应我们的框架,但它们都忽略了一个关键的梯度偏置问题,\ emph {i.},均值的梯度估计也偏置在稀疏数据上。为了解决这个问题,我们将梯度及其流量视为元知识,然后提出一种新的神经常规差分方程(ODE)基础的元优化器,以抛光原型,称为Metanode。在此元优化器中,我们首先将基于平均原型的原型视图为初始原型,然后将原型优化的过程模拟为神经竞争指定的连续时间动态。仔细设计梯度流动推理网络,学习估计原型动态的连续梯度流。最后,通过求解神经焦点,可以获得最佳原型。对Miniimagenet,Tieredimagenet和Cub-200-2011的广泛实验显示了我们方法的有效性。
translated by 谷歌翻译
Metric-based meta-learning is one of the de facto standards in few-shot learning. It composes of representation learning and metrics calculation designs. Previous works construct class representations in different ways, varying from mean output embedding to covariance and distributions. However, using embeddings in space lacks expressivity and cannot capture class information robustly, while statistical complex modeling poses difficulty to metric designs. In this work, we use tensor fields (``areas'') to model classes from the geometrical perspective for few-shot learning. We present a simple and effective method, dubbed hypersphere prototypes (HyperProto), where class information is represented by hyperspheres with dynamic sizes with two sets of learnable parameters: the hypersphere's center and the radius. Extending from points to areas, hyperspheres are much more expressive than embeddings. Moreover, it is more convenient to perform metric-based classification with hypersphere prototypes than statistical modeling, as we only need to calculate the distance from a data point to the surface of the hypersphere. Following this idea, we also develop two variants of prototypes under other measurements. Extensive experiments and analysis on few-shot learning tasks across NLP and CV and comparison with 20+ competitive baselines demonstrate the effectiveness of our approach.
translated by 谷歌翻译
在元学习框架下设计了许多射门学习方法,这些方法从各种学习任务中学习并推广到新任务。这些元学习方法在从同一分布(I.I.D.观察)中绘制的所有样本中的情况下实现了预期的性能。然而,在现实世界应用中,很少拍摄的学习范式往往遭受数据转移,即,即使在相同的任务中,也可以从各种数据分布中汲取不同任务中的示例。大多数现有的几次拍摄方法不考虑数据班次,因此在数据分布换档时显示降级性能。然而,由于每个任务中的标记样本数量有限的标记样本,因此在几次拍摄学习中解决数据转换问题是不普遍的。针对解决此问题,我们提出了一种新的基于度量的元学习框架,以便在知识图表的帮助下提取任务特定的表示和任务共享表示。因此,任务内的数据偏移可以通过任务共享和特定于任务的表示的组合来组合。拟议的模型是对流行的基准测试和两个构造的新具有挑战性的数据集。评估结果表明了其显着性能。
translated by 谷歌翻译
大多数元学习方法都假设存在于可用于基本知识的情节元学习的一组非常大的标记数据。这与更现实的持续学习范例形成对比,其中数据以包含不相交类的任务的形式逐步到达。在本文中,我们考虑了这个增量元学习(IML)的这个问题,其中类在离散任务中逐步呈现。我们提出了一种方法,我们调用了IML,我们称之为eCISODIC重播蒸馏(ERD),该方法将来自当前任务的类混合到当前任务中,当研究剧集时,来自先前任务的类别示例。然后将这些剧集用于知识蒸馏以最大限度地减少灾难性的遗忘。四个数据集的实验表明ERD超越了最先进的。特别是,在一次挑战的单次次数较挑战,长任务序列增量元学习场景中,我们将IML和联合训练与当前状态的3.5%/ 10.1%/ 13.4%之间的差距降低我们在Diered-ImageNet / Mini-ImageNet / CIFAR100上分别为2.6%/ 2.9%/ 5.0%。
translated by 谷歌翻译
很少有射击学习(FSL)由于其在模型训练中的能力而无需过多的数据而引起了计算机视觉的越来越多的关注。 FSL具有挑战性,因为培训和测试类别(基础与新颖集)可能会在很大程度上多样化。传统的基于转移的解决方案旨在将从大型培训集中学到的知识转移到目标测试集中是有限的,因为任务分配转移的关键不利影响没有充分解决。在本文中,我们通过结合度量学习和通道注意的概念扩展了基于转移方法的解决方案。为了更好地利用特征主链提取的特征表示,我们提出了特定于类的通道注意(CSCA)模块,该模块通过分配每个类别的CSCA权重向量来学会突出显示每个类中的判别通道。与旨在学习全球班级功能的一般注意力模块不同,CSCA模块旨在通过非常有效的计算来学习本地和特定的特定功能。我们评估了CSCA模块在标准基准测试中的性能,包括Miniimagenet,Cifar-imagenet,Cifar-FS和Cub-200-200-2011。实验在电感和/跨域设置中进行。我们取得了新的最新结果。
translated by 谷歌翻译
Nearest-Neighbor (NN) classification has been proven as a simple and effective approach for few-shot learning. The query data can be classified efficiently by finding the nearest support class based on features extracted by pretrained deep models. However, NN-based methods are sensitive to the data distribution and may produce false prediction if the samples in the support set happen to lie around the distribution boundary of different classes. To solve this issue, we present P3DC-Shot, an improved nearest-neighbor based few-shot classification method empowered by prior-driven data calibration. Inspired by the distribution calibration technique which utilizes the distribution or statistics of the base classes to calibrate the data for few-shot tasks, we propose a novel discrete data calibration operation which is more suitable for NN-based few-shot classification. Specifically, we treat the prototypes representing each base class as priors and calibrate each support data based on its similarity to different base prototypes. Then, we perform NN classification using these discretely calibrated support data. Results from extensive experiments on various datasets show our efficient non-learning based method can outperform or at least comparable to SOTA methods which need additional learning steps.
translated by 谷歌翻译
传统的细颗粒图像分类通常依赖于带注释的地面真相的大规模训练样本。但是,某些子类别在实际应用中可能几乎没有可用的样本。在本文中,我们建议使用多频邻域(MFN)和双交叉调制(DCM)提出一个新颖的几弹性细颗粒图像分类网络(FICNET)。采用模块MFN来捕获空间域和频域中的信息。然后,提取自相似性和多频成分以产生多频结构表示。 DCM使用分别考虑全球环境信息和类别之间的微妙关系来调节嵌入过程。针对两个少量任务的三个细粒基准数据集进行的综合实验验证了FICNET与最先进的方法相比具有出色的性能。特别是,在两个数据集“ Caltech-UCSD鸟”和“ Stanford Cars”上进行的实验分别可以获得分类精度93.17 \%和95.36 \%。它们甚至高于一般的细粒图像分类方法可以实现的。
translated by 谷歌翻译
跨域很少的学习(CD-FSL)最近几乎没有目标样本在源和目标域之间存在极端差异,最近引起了极大的关注。对于CD-FSL,最近的研究通常开发了基于转移学习的方法,该方法预先培训了受欢迎的标记源域数据集的神经网络,然后将其传输到目标域数据。尽管标记的数据集可以为目标数据提供合适的初始参数,但源和目标之间的域差异可能会阻碍目标域上的微调。本文提出了一种简单而功能强大的方法,该方法在适应目标数据之前将源域上拟合的参数重新传递。重新运行重置源预训练模型的特定于源特异性参数,从而促进了目标域上的微调,从而改善了几乎没有射击性能。
translated by 谷歌翻译
Few-shot learning aims to fast adapt a deep model from a few examples. While pre-training and meta-training can create deep models powerful for few-shot generalization, we find that pre-training and meta-training focuses respectively on cross-domain transferability and cross-task transferability, which restricts their data efficiency in the entangled settings of domain shift and task shift. We thus propose the Omni-Training framework to seamlessly bridge pre-training and meta-training for data-efficient few-shot learning. Our first contribution is a tri-flow Omni-Net architecture. Besides the joint representation flow, Omni-Net introduces two parallel flows for pre-training and meta-training, responsible for improving domain transferability and task transferability respectively. Omni-Net further coordinates the parallel flows by routing their representations via the joint-flow, enabling knowledge transfer across flows. Our second contribution is the Omni-Loss, which introduces a self-distillation strategy separately on the pre-training and meta-training objectives for boosting knowledge transfer throughout different training stages. Omni-Training is a general framework to accommodate many existing algorithms. Evaluations justify that our single framework consistently and clearly outperforms the individual state-of-the-art methods on both cross-task and cross-domain settings in a variety of classification, regression and reinforcement learning problems.
translated by 谷歌翻译
Domain generalization (DG) is the challenging and topical problem of learning models that generalize to novel testing domains with different statistics than a set of known training domains. The simple approach of aggregating data from all source domains and training a single deep neural network end-to-end on all the data provides a surprisingly strong baseline that surpasses many prior published methods. In this paper we build on this strong baseline by designing an episodic training procedure that trains a single deep network in a way that exposes it to the domain shift that characterises a novel domain at runtime. Specifically, we decompose a deep network into feature extractor and classifier components, and then train each component by simulating it interacting with a partner who is badly tuned for the current domain. This makes both components more robust, ultimately leading to our networks producing state-of-the-art performance on three DG benchmarks. Furthermore, we consider the pervasive workflow of using an ImageNet trained CNN as a fixed feature extractor for downstream recognition tasks. Using the Visual Decathlon benchmark, we demonstrate that our episodic-DG training improves the performance of such a general purpose feature extractor by explicitly training a feature for robustness to novel problems. This shows that DG training can benefit standard practice in computer vision.
translated by 谷歌翻译
Few-shot classification aims to learn a classifier to recognize unseen classes during training with limited labeled examples. While significant progress has been made, the growing complexity of network designs, meta-learning algorithms, and differences in implementation details make a fair comparison difficult. In this paper, we present 1) a consistent comparative analysis of several representative few-shot classification algorithms, with results showing that deeper backbones significantly reduce the performance differences among methods on datasets with limited domain differences, 2) a modified baseline method that surprisingly achieves competitive performance when compared with the state-of-the-art on both the mini-ImageNet and the CUB datasets, and 3) a new experimental setting for evaluating the cross-domain generalization ability for few-shot classification algorithms. Our results reveal that reducing intra-class variation is an important factor when the feature backbone is shallow, but not as critical when using deeper backbones. In a realistic cross-domain evaluation setting, we show that a baseline method with a standard fine-tuning practice compares favorably against other state-of-the-art few-shot learning algorithms.
translated by 谷歌翻译
Most existing 3D point cloud object detection approaches heavily rely on large amounts of labeled training data. However, the labeling process is costly and time-consuming. This paper considers few-shot 3D point cloud object detection, where only a few annotated samples of novel classes are needed with abundant samples of base classes. To this end, we propose Prototypical VoteNet to recognize and localize novel instances, which incorporates two new modules: Prototypical Vote Module (PVM) and Prototypical Head Module (PHM). Specifically, as the 3D basic geometric structures can be shared among categories, PVM is designed to leverage class-agnostic geometric prototypes, which are learned from base classes, to refine local features of novel categories.Then PHM is proposed to utilize class prototypes to enhance the global feature of each object, facilitating subsequent object localization and classification, which is trained by the episodic training strategy. To evaluate the model in this new setting, we contribute two new benchmark datasets, FS-ScanNet and FS-SUNRGBD. We conduct extensive experiments to demonstrate the effectiveness of Prototypical VoteNet, and our proposed method shows significant and consistent improvements compared to baselines on two benchmark datasets.
translated by 谷歌翻译