尽管速率失真优化是传统图像和视频压缩的关键部分,但存在不存在许多方法,将该概念传送到端到端训练的图像压缩。大多数框架包含静态压缩和解压缩模型,在训练后固定,因此不可能实现高效的速率失真优化。在以前的工作中,我们提出了RDONET,它使RDO方法能够与HEVC中的自适应块分区相当。在本文中,我们通过引入RDO的低复杂性估算来增强培训,该培训将结果归因于培训。此外,我们提出了快速且非常快速的RDO推理模式。通过我们的小说训练方法,我们在先前的RDONET模型上实现了MS-SSIM的平均节省19.6%,其在可比较的传统深图像编码器上等于27.3%的速率节省。
translated by 谷歌翻译
Image compression is a fundamental research field and many well-known compression standards have been developed for many decades. Recently, learned compression methods exhibit a fast development trend with promising results. However, there is still a performance gap between learned compression algorithms and reigning compression standards, especially in terms of widely used PSNR metric. In this paper, we explore the remaining redundancy of recent learned compression algorithms. We have found accurate entropy models for rate estimation largely affect the optimization of network parameters and thus affect the rate-distortion performance. Therefore, in this paper, we propose to use discretized Gaussian Mixture Likelihoods to parameterize the distributions of latent codes, which can achieve a more accurate and flexible entropy model. Besides, we take advantage of recent attention modules and incorporate them into network architecture to enhance the performance. Experimental results demonstrate our proposed method achieves a state-of-the-art performance compared to existing learned compression methods on both Kodak and high-resolution datasets. To our knowledge our approach is the first work to achieve comparable performance with latest compression standard Versatile Video Coding (VVC) regarding PSNR. More importantly, our approach generates more visually pleasant results when optimized by MS-SSIM. The project page is at https://github.com/ZhengxueCheng/ Learned-Image-Compression-with-GMM-and-Attention.
translated by 谷歌翻译
In recent years, neural image compression (NIC) algorithms have shown powerful coding performance. However, most of them are not adaptive to the image content. Although several content adaptive methods have been proposed by updating the encoder-side components, the adaptability of both latents and the decoder is not well exploited. In this work, we propose a new NIC framework that improves the content adaptability on both latents and the decoder. Specifically, to remove redundancy in the latents, our content adaptive channel dropping (CACD) method automatically selects the optimal quality levels for the latents spatially and drops the redundant channels. Additionally, we propose the content adaptive feature transformation (CAFT) method to improve decoder-side content adaptability by extracting the characteristic information of the image content, which is then used to transform the features in the decoder side. Experimental results demonstrate that our proposed methods with the encoder-side updating algorithm achieve the state-of-the-art performance.
translated by 谷歌翻译
传统的视频压缩(VC)方法基于运动补偿变换编码,并且由于端到端优化问题的组合性质,运动估计,模式和量化参数选择的步骤和熵编码是单独优化的。学习VC允许同时对端到端速率失真(R-D)优化非线性变换,运动和熵模型的优化训练。大多数工作都在学习VC基于R-D损耗对连续帧的对考虑连续视频编解码器的端到端优化。它在传统的VC中众所周知的是,双向编码优于顺序压缩,因为它能够使用过去和未来的参考帧。本文提出了一种学习的分层双向视频编解码器(LHBDC),其结合了分层运动补偿预测和端到端优化的益处。实验结果表明,我们达到了迄今为​​止在PSNR和MS-SSIM中的学习VC方案报告的最佳R-D结果。与传统的视频编解码器相比,我们的端到端优化编解码器的RD性能优于PSNR和MS-SSIM中的X265和SVT-HEVC编码器(“非常流”预设)以及MS-中的HM 16.23参考软件。 SSIM。我们提出了由于所提出的新颖工具,例如学习屏蔽,流场附带和时间流量矢量预测等新颖工具,展示了表现出性能提升。重现我们结果的模型和说明可以在https://github.com/makinyilmaz/lhbdc/中找到
translated by 谷歌翻译
Recent models for learned image compression are based on autoencoders, learning approximately invertible mappings from pixels to a quantized latent representation. These are combined with an entropy model, a prior on the latent representation that can be used with standard arithmetic coding algorithms to yield a compressed bitstream. Recently, hierarchical entropy models have been introduced as a way to exploit more structure in the latents than simple fully factorized priors, improving compression performance while maintaining end-to-end optimization. Inspired by the success of autoregressive priors in probabilistic generative models, we examine autoregressive, hierarchical, as well as combined priors as alternatives, weighing their costs and benefits in the context of image compression. While it is well known that autoregressive models come with a significant computational penalty, we find that in terms of compression performance, autoregressive and hierarchical priors are complementary and, together, exploit the probabilistic structure in the latents better than all previous learned models. The combined model yields state-of-the-art rate-distortion performance, providing a 15.8% average reduction in file size over the previous state-of-the-art method based on deep learning, which corresponds to a 59.8% size reduction over JPEG, more than 35% reduction compared to WebP and JPEG2000, and bitstreams 8.4% smaller than BPG, the current state-of-the-art image codec. To the best of our knowledge, our model is the first learning-based method to outperform BPG on both PSNR and MS-SSIM distortion metrics.32nd Conference on Neural Information Processing Systems (NIPS 2018),
translated by 谷歌翻译
上下文自适应熵模型的应用显着提高了速率 - 渗透率(R-D)的性能,在该表现中,超级培训和自回归模型被共同利用来有效捕获潜在表示的空间冗余。但是,潜在表示仍然包含一些空间相关性。此外,这些基于上下文自适应熵模型的方法在解码过程中无法通过并行计算设备,例如FPGA或GPU。为了减轻这些局限性,我们提出了一个学识渊博的多分辨率图像压缩框架,该框架利用了最近开发的八度卷积,以将潜在表示形式分配到高分辨率(HR)和低分辨率(LR)部分,类似于小波变换,这进一步改善了R-D性能。为了加快解码的速度,我们的方案不使用上下文自适应熵模型。取而代之的是,我们利用一个额外的超层,包括超级编码器和超级解码器,以进一步删除潜在表示的空间冗余。此外,将跨分辨率参数估计(CRPE)引入提出的框架中,以增强信息流并进一步改善速率延伸性能。提出了对总损耗函数提出的其他信息损失,以调整LR部分对最终位流的贡献。实验结果表明,与最先进的学术图像压缩方法相比,我们的方法分别将解码时间减少了约73.35%和93.44%,R-D性能仍然优于H.266/VVC(4:4::4:: 2:0)以及对PSNR和MS-SSIM指标的一些基于学习的方法。
translated by 谷歌翻译
可扩展的编码,可以适应通道带宽变化,在当今复杂的网络环境中表现良好。然而,现有的可扩展压缩方法面临两个挑战:降低压缩性能和可扩展性不足。在本文中,我们提出了第一所学习的细粒度可扩展图像压缩模型(DeepFGS)来克服上述两个缺点。具体地,我们介绍一个特征分离骨干,将图像信息划分为基本和可伸缩的功能,然后通过信息重新排列策略通过通道重新分配特征通道。以这种方式,我们可以通过一次通过编码来生成连续可扩展的比特流。此外,我们重复使用解码器以降低DeepFGS的参数和计算复杂性。实验表明,我们的DeePFGS优于PSNR和MS-SSIM度量中的所有基于学习的可伸缩图像压缩模型和传统可伸缩图像编解码器。据我们所知,我们的DeePFGS是对学习的细粒度可扩展编码的首次探索,与基于学习的方法相比,实现了最优质的可扩展性。
translated by 谷歌翻译
为了提高图像压缩性能,最近的基于神经网络的基于神经网络的研究可以分为三类:学习编解码器,后处理网络和紧凑型表示网络。学习编解码器专为超出传统压缩模块而设计的端到端学习。后处理网络使用基于示例的学习增加解码图像的质量。学习紧凑的表示网络,以降低输入图像的容量,以减少比特率的同时保持解码图像的质量。然而,这些方法与现有的编解码器不兼容,或者不会最佳地增加编码效率。具体地,由于编解码器的不准确性,难以在先前的研究中实现最佳学习。在本文中,我们提出了一种基于辅助编解码器网络(ACN)的新颖的标准兼容图像压缩框架。 ACNS旨在模仿现有编解码器的图像劣化操作,这为紧凑型表示网络提供了更准确的梯度。因此,可以有效地和最佳地学习紧凑的表示和后处理网络。我们证明,我们基于JPEG和高效视频编码(HEVC)标准的建议框架基本上以标准的兼容方式大致优于现有的图像压缩算法。
translated by 谷歌翻译
最近,基于深度学习的图像压缩已取得了显着的进步,并且在主观度量和更具挑战性的客观指标中,与最新的传统方法H.266/vvc相比,取得了更好的评分(R-D)性能。但是,一个主要问题是,许多领先的学识渊博的方案无法保持绩效和复杂性之间的良好权衡。在本文中,我们提出了一个效率和有效的图像编码框架,该框架的复杂性比最高的状态具有相似的R-D性能。首先,我们开发了改进的多尺度残差块(MSRB),该块可以扩展容纳长石,并且更容易获得全球信息。它可以进一步捕获和减少潜在表示的空间相关性。其次,引入了更高级的重要性图网络,以自适应地分配位置到图像的不同区域。第三,我们应用2D定量后flter(PQF)来减少视频编码中样本自适应偏移量(SAO)flter的动机。此外,我们认为编码器和解码器的复杂性对图像压缩性能有不同的影响。基于这一观察结果,我们设计了一个不对称范式,其中编码器采用三个阶段的MSRB来提高学习能力,而解码器只需要一个srb的一个阶段就可以产生令人满意的重建,从而在不牺牲性能的情况下降低了解码的复杂性。实验结果表明,与最先进的方法相比,所提出方法的编码和解码时间速度约为17倍,而R-D性能仅在Kodak和Tecnick数据集中降低了1%,而R-D性能仅少于1%。它仍然比H.266/VVC(4:4:4)和其他基于学习的方法更好。我们的源代码可在https://github.com/fengyurenpingsheng上公开获得。
translated by 谷歌翻译
对于神经视频编解码器,设计有效的熵模型至关重要但又具有挑战性,该模型可以准确预测量化潜在表示的概率分布。但是,大多数现有的视频编解码器直接使用图像编解码器的现成的熵模型来编码残差或运动,并且不会完全利用视频中的时空特性。为此,本文提出了一个强大的熵模型,该模型有效地捕获了空间和时间依赖性。特别是,我们介绍了潜在的先验,这些先验利用了潜在表示之间的相关性来挤压时间冗余。同时,提出了双重空间先验,以平行友好的方式降低空间冗余。此外,我们的熵模型也是通用的。除了估计概率分布外,我们的熵模型还在空间通道上生成量化步骤。这种内容自适应的量化机制不仅有助于我们的编解码器在单个模型中实现平滑的速率调整,而且还通过动态位分配来改善最终速率延伸性能。实验结果表明,与H.266(VTM)相比,使用最高的压缩率配置,我们的神经编解码器在提出的熵模型中,我们的神经编解码器可以在UVG数据集上节省18.2%的比特率。它在神经视频编解码器的开发中是一个新的里程碑。这些代码在https://github.com/microsoft/dcvc上。
translated by 谷歌翻译
熵建模是高性能图像压缩算法的关键组件。自回旋上下文建模的最新发展有助于基于学习的方法超越了经典的方法。但是,由于潜在空间中的空间通道依赖性以及上下文适应性的次优实现,这些模型的性能可以进一步提高。受到变压器的自适应特性的启发,我们提出了一个基于变压器的上下文模型,名为ContextFormer,该模型将事实上的标准注意机制推广到时空通道的注意力。我们用上下文形式替换了现代压缩框架的上下文模型,并在广泛使用的柯达,Clic2020和Tecnick Image数据集上进行测试。我们的实验结果表明,与标准多功能视频编码(VVC)测试模型(VTM)16.2相比,提出的模型可节省多达11%的利率,并且在PSNR和MS-SSIM方面优于各种基于学习的模型。
translated by 谷歌翻译
We describe an end-to-end trainable model for image compression based on variational autoencoders. The model incorporates a hyperprior to effectively capture spatial dependencies in the latent representation. This hyperprior relates to side information, a concept universal to virtually all modern image codecs, but largely unexplored in image compression using artificial neural networks (ANNs). Unlike existing autoencoder compression methods, our model trains a complex prior jointly with the underlying autoencoder. We demonstrate that this model leads to state-of-the-art image compression when measuring visual quality using the popular MS-SSIM index, and yields rate-distortion performance surpassing published ANN-based methods when evaluated using a more traditional metric based on squared error (PSNR). Furthermore, we provide a qualitative comparison of models trained for different distortion metrics.
translated by 谷歌翻译
学习的视频压缩最近成为开发高级视频压缩技术的重要研究主题,其中运动补偿被认为是最具挑战性的问题之一。在本文中,我们通过异质变形补偿策略(HDCVC)提出了一个学识渊博的视频压缩框架,以解决由单尺度可变形的特征域中单尺可变形核引起的不稳定压缩性能的问题。更具体地说,所提出的算法提取物从两个相邻框架中提取的算法提取物特征来估算估计内容自适应的异质变形(Hetdeform)内核偏移量,而不是利用光流或单尺内核变形对齐。然后,我们将参考特征转换为HetDeform卷积以完成运动补偿。此外,我们设计了一个空间 - 邻化的分裂归一化(SNCDN),以实现更有效的数据高斯化结合了广义分裂的归一化。此外,我们提出了一个多框架增强的重建模块,用于利用上下文和时间信息以提高质量。实验结果表明,HDCVC比最近最新学习的视频压缩方法取得了优越的性能。
translated by 谷歌翻译
Recent neural compression methods have been based on the popular hyperprior framework. It relies on Scalar Quantization and offers a very strong compression performance. This contrasts from recent advances in image generation and representation learning, where Vector Quantization is more commonly employed. In this work, we attempt to bring these lines of research closer by revisiting vector quantization for image compression. We build upon the VQ-VAE framework and introduce several modifications. First, we replace the vanilla vector quantizer by a product quantizer. This intermediate solution between vector and scalar quantization allows for a much wider set of rate-distortion points: It implicitly defines high-quality quantizers that would otherwise require intractably large codebooks. Second, inspired by the success of Masked Image Modeling (MIM) in the context of self-supervised learning and generative image models, we propose a novel conditional entropy model which improves entropy coding by modelling the co-dependencies of the quantized latent codes. The resulting PQ-MIM model is surprisingly effective: its compression performance on par with recent hyperprior methods. It also outperforms HiFiC in terms of FID and KID metrics when optimized with perceptual losses (e.g. adversarial). Finally, since PQ-MIM is compatible with image generation frameworks, we show qualitatively that it can operate under a hybrid mode between compression and generation, with no further training or finetuning. As a result, we explore the extreme compression regime where an image is compressed into 200 bytes, i.e., less than a tweet.
translated by 谷歌翻译
我们引入基于实例自适应学习的视频压缩算法。在要传输的每个视频序列上,我们介绍了预训练的压缩模型。最佳参数与潜在代码一起发送到接收器。通过熵编码在合适的混合模型下的参数更新,我们确保可以有效地编码网络参数。该实例自适应压缩算法对于基础模型的选择是不可知的,并且具有改进任何神经视频编解码器的可能性。在UVG,HEVC和XIPH数据集上,我们的CODEC通过21%至26%的BD速率节省,提高了低延迟尺度空间流量模型的性能,以及最先进的B帧模型17至20%的BD速率储蓄。我们还证明了实例 - 自适应FineTuning改善了域移位的鲁棒性。最后,我们的方法降低了压缩模型的容量要求。我们表明它即使在将网络大小减少72%之后也能实现最先进的性能。
translated by 谷歌翻译
视频内容不仅是人类观看的,而且越来越多地被机器观看。例如,机器学习模型分析监视视频,以进行安全性和流量监控,通过YouTube视频搜索不适当的内容,等等。在本文中,我们提出了一个可扩展的视频编码框架,该框架通过其基础层bitstream和人类视觉通过其增强层的bitstream来支持机器视觉(特别是对象检测)。所提出的框架包括基于常规神经网络(DNN)的视频编码的组件。结果表明,与最先进的视频编解码器相比,在对象检测中,提议的框架可节省13-19%的位,同时在人类视觉任务上保持竞争力。
translated by 谷歌翻译
在近期深度图像压缩神经网络中,熵模型在估计深度图像编码的先前分配时起着重要作用。现有方法将HydupRior与熵估计功能中的本地上下文组合。由于没有全球愿景,这大大限制了他们的表现。在这项工作中,我们提出了一种新的全局参考模型,用于图像压缩,以有效地利用本地和全局上下文信息,导致增强的压缩率。所提出的方法扫描解码的潜伏,然后找到最相关的潜伏,以帮助分布估计当前潜伏。这项工作的副产品是一种平均转换GDN模块的创新,进一步提高了性能。实验结果表明,所提出的模型优于行业中大多数最先进方法的速率变形性能。
translated by 谷歌翻译
最近的工作表明,变异自动编码器(VAE)与速率失真理论之间有着密切的理论联系。由此激发,我们从生成建模的角度考虑了有损图像压缩的问题。从最初是为数据(图像)分布建模设计的Resnet VAE开始,我们使用量化意识的后验和先验重新设计其潜在变量模型,从而实现易于量化和熵编码的图像压缩。除了改进的神经网络块外,我们还提出了一类强大而有效的有损图像编码器类别,超过了自然图像(有损)压缩的先前方法。我们的模型以粗略的方式压缩图像,并支持并行编码和解码,从而在GPU上快速执行。
translated by 谷歌翻译
当涉及数码相机中的图像压缩时,传统上是在压缩之前执行的。但是,在某些应用中,可能需要进行图像噪声来证明图像的可信度,例如法院证据和图像取证。这意味着除干净的图像本身外,还需要编码噪声本身。在本文中,我们提出了一个基于学习的图像压缩框架,在该框架中共同执行图像denoising和压缩。图像编解码器的潜在空间以可扩展的方式组织,以便可以从潜在空间的子集(基础层)中解码清洁图像,而嘈杂的图像则以较高的速率从完整的潜在空间解码。使用潜在空间的子集作为剥落图像,可以以较低的速率进行deno。除了提供嘈杂的输入图像的可扩展表示外,用压缩共同执行deno,这是直观的意义,因为噪声很难压缩;因此,可压缩性是可能有助于区分信号的标准之一。将提出的编解码器与已建立的压缩和降解基准进行了比较,并且与最先进的编解码器和最先进的Denoiser的级联组合相比,实验显示了大量的比特率节省。
translated by 谷歌翻译
神经图像编码现在表示现有的图像压缩方法。但是,在视频域中仍有很多工作。在这项工作中,我们提出了一部结束了学习的视频编解码器,介绍了几个建筑Noveltize以及培训Noveltizes,围绕适应和关注的概念。我们的编解码器被组织为与帧间编解码器配对的帧内编解码器。作为一种建筑新颖,我们建议培训帧间编解码器模型以基于输入视频的分辨率来调整运动估计处理。第二个建筑新奇是一种新的神经块,它将基于分裂的神经网络和Densenets的概念结合了。最后,我们建议在推理时间内过度装备一组解码器侧乘法参数。通过消融研究和对现有技术的比较,我们在编码收益方面表现出我们所提出的技术的好处。我们将编解码器与VVC / H.266和RLVC进行比较,该rlvc分别代表最先进的传统和端到端学习的编解码器,并在2021年在2021年在2021年执行端到端学习方法竞争,e2e_t_ol。我们的编解码器显然优于E2E_T_OL,并在某些设置中对VVC和RLVC有利地进行比较。
translated by 谷歌翻译