我们为来自多视图立体声(MVS)城市场景的3D建筑物的实例分割了一部小说框架。与关注城市场景的语义分割的现有作品不同,即使它们安装在大型和不精确的3D表面模型中,这项工作的重点是检测和分割3D构建实例。通过添加高度图,首先将多视图RGB图像增强到RGBH图像,并且被分段以使用微调的2D实例分割神经网络获得所有屋顶实例。然后将来自不同的多视图图像的屋顶实例掩码被聚集到全局掩码中。我们的面具聚类占空间闭塞和重叠,可以消除多视图图像之间的分割歧义。基于这些全局掩码,3D屋顶实例由掩码背部投影分割,并通过Markov随机字段(MRF)优化扩展到整个建筑实例。定量评估和消融研究表明了该方法的所有主要步骤的有效性。提供了一种用于评估3D建筑模型的实例分割的数据集。据我们所知,它是一个在实例分割级别的3D城市建筑的第一个数据集。
translated by 谷歌翻译