最近被证明通过深度加强学习(RL)或模仿学习(IL)来学习沟通是解决多智能传道路径查找(MAPF)的有效方法。然而,现有的基于通信的MAPF求解器专注于广播通信,代理将其消息广播给所有其他或预定义代理。它不仅是不切实际的,而且导致冗余信息甚至可能损害多功能协作。简洁的通信计划应该了解哪些信息与每个代理的决策过程有关和影响。为了解决这个问题,我们考虑一个请求 - 回复方案并提出决策因果通信(DCC),这是一个简单但有效的模型,使代理能够在培训和执行期间选择邻居进行通信。具体地,邻居才被确定为当存在该邻居的存在导致在中央代理上的决策调整时相关的邻居。此判决仅基于代理人的本地观察,因此适用于分散执行来处理大规模问题。富有障碍环境中的实证评估表明了我们方法的低通信开销的高成功率。
translated by 谷歌翻译
分散的多代理导航的代理缺乏世界知识,无法可靠地制定安全和(接近)最佳计划。他们将决定基于邻居的可观察状态,这隐藏了邻居的导航意图。我们提出了通过机构间沟通的增强分散导航,以提高其绩效和援助代理,以做出合理的导航决策。在这方面,我们提出了一种新颖的增强学习方法,用于使用选择性间隔沟通来避免多代理碰撞。我们的网络学会决定“何时”并与“谁”交流,以端到端的方式索取其他信息。我们将沟通选择作为链接预测问题,在该问题中,如果可以观察到的信息,网络可以预测是否需要通信。传达的信息增加了观察到的邻居信息以选择合适的导航计划。随着机器人的邻居数量的变化,我们使用多头自发项机制来编码邻居信息并创建固定长度的观察向量。我们验证我们提出的方法在挑战模拟基准中实现了多个机器人之间的安全有效导航。通过学习的通信,我们的网络的性能比在各种指标(例如到目标和碰撞频率)中的现有分散方法的表现要好得多。此外,我们展示了网络有效地学会在高复杂性情况下进行必要时进行交流。
translated by 谷歌翻译
未来的互联网涉及几种新兴技术,例如5G和5G网络,车辆网络,无人机(UAV)网络和物联网(IOT)。此外,未来的互联网变得异质并分散了许多相关网络实体。每个实体可能需要做出本地决定,以在动态和不确定的网络环境下改善网络性能。最近使用标准学习算法,例如单药强化学习(RL)或深入强化学习(DRL),以使每个网络实体作为代理人通过与未知环境进行互动来自适应地学习最佳决策策略。但是,这种算法未能对网络实体之间的合作或竞争进行建模,而只是将其他实体视为可能导致非平稳性问题的环境的一部分。多机构增强学习(MARL)允许每个网络实体不仅观察环境,还可以观察其他实体的政策来学习其最佳政策。结果,MAL可以显着提高网络实体的学习效率,并且最近已用于解决新兴网络中的各种问题。在本文中,我们因此回顾了MAL在新兴网络中的应用。特别是,我们提供了MARL的教程,以及对MARL在下一代互联网中的应用进行全面调查。特别是,我们首先介绍单代机Agent RL和MARL。然后,我们回顾了MAL在未来互联网中解决新兴问题的许多应用程序。这些问题包括网络访问,传输电源控制,计算卸载,内容缓存,数据包路由,无人机网络的轨迹设计以及网络安全问题。
translated by 谷歌翻译
Multi-agent settings remain a fundamental challenge in the reinforcement learning (RL) domain due to the partial observability and the lack of accurate real-time interactions across agents. In this paper, we propose a new method based on local communication learning to tackle the multi-agent RL (MARL) challenge within a large number of agents coexisting. First, we design a new communication protocol that exploits the ability of depthwise convolution to efficiently extract local relations and learn local communication between neighboring agents. To facilitate multi-agent coordination, we explicitly learn the effect of joint actions by taking the policies of neighboring agents as inputs. Second, we introduce the mean-field approximation into our method to reduce the scale of agent interactions. To more effectively coordinate behaviors of neighboring agents, we enhance the mean-field approximation by a supervised policy rectification network (PRN) for rectifying real-time agent interactions and by a learnable compensation term for correcting the approximation bias. The proposed method enables efficient coordination as well as outperforms several baseline approaches on the adaptive traffic signal control (ATSC) task and the StarCraft II multi-agent challenge (SMAC).
translated by 谷歌翻译
Cooperative multi-agent reinforcement learning (MARL) has achieved significant results, most notably by leveraging the representation-learning abilities of deep neural networks. However, large centralized approaches quickly become infeasible as the number of agents scale, and fully decentralized approaches can miss important opportunities for information sharing and coordination. Furthermore, not all agents are equal -- in some cases, individual agents may not even have the ability to send communication to other agents or explicitly model other agents. This paper considers the case where there is a single, powerful, \emph{central agent} that can observe the entire observation space, and there are multiple, low-powered \emph{local agents} that can only receive local observations and are not able to communicate with each other. The central agent's job is to learn what message needs to be sent to different local agents based on the global observations, not by centrally solving the entire problem and sending action commands, but by determining what additional information an individual agent should receive so that it can make a better decision. In this work we present our MARL algorithm \algo, describe where it would be most applicable, and implement it in the cooperative navigation and multi-agent walker domains. Empirical results show that 1) learned communication does indeed improve system performance, 2) results generalize to heterogeneous local agents, and 3) results generalize to different reward structures.
translated by 谷歌翻译
我们开发了一个多功能辅助救援学习(MARL)方法,以了解目标跟踪的可扩展控制策略。我们的方法可以处理任意数量的追求者和目标;我们显示出现的任务,该任务包括高达1000追踪跟踪1000个目标。我们使用分散的部分可观察的马尔可夫决策过程框架来模拟追求者作为接受偏见观察(范围和轴承)的代理,了解使用固定的未知政策的目标。注意机制用于参数化代理的价值函数;这种机制允许我们处理任意数量的目标。熵 - 正规的脱助政策RL方法用于培训随机政策,我们讨论如何在追求者之间实现对冲行为,尽管有完全分散的控制执行,但仍然导致合作较弱的合作形式。我们进一步开发了一个掩蔽启发式,允许训练较少的问题,少量追求目标和在更大的问题上执行。进行彻底的仿真实验,消融研究和对现有技术算法的比较,以研究对不同数量的代理和目标性能的方法和鲁棒性的可扩展性。
translated by 谷歌翻译
We consider the problem of multi-agent navigation and collision avoidance when observations are limited to the local neighborhood of each agent. We propose InforMARL, a novel architecture for multi-agent reinforcement learning (MARL) which uses local information intelligently to compute paths for all the agents in a decentralized manner. Specifically, InforMARL aggregates information about the local neighborhood of agents for both the actor and the critic using a graph neural network and can be used in conjunction with any standard MARL algorithm. We show that (1) in training, InforMARL has better sample efficiency and performance than baseline approaches, despite using less information, and (2) in testing, it scales well to environments with arbitrary numbers of agents and obstacles.
translated by 谷歌翻译
尽管空间限制对代理的性能产生了明显的影响,但多代理导航算法设计的传统方法将环境视为固定的限制。然而,手动设计改进的环境布局和结构效率低下且可能昂贵。本文的目的是将环境视为系统级优化问题中的决策变量,在该问题中,代理性能和环境成本都可以考虑到。我们首先提出一个新颖的环境优化问题。我们通过正式证明在哪些条件下显示环境可以改变的同时保证完整性(即所有代理达到其导航目标)。我们的解决方案利用了一种无模型的增强学习方法。为了适应广泛的实施方案,我们包括在线和离线优化,以及离散和连续的环境表示。数值结果证实了我们的理论发现并验证了我们的方法。
translated by 谷歌翻译
如今,合作多代理系统用于学习如何在大规模动态环境中实现目标。然而,在这些环境中的学习是具有挑战性的:从搜索空间大小对学习时间的影响,代理商之间的低效合作。此外,增强学习算法可能遭受这种环境的长时间的收敛。本文介绍了通信框架。在拟议的沟通框架中,代理商学会有效地合作,同时通过引入新的状态计算方法,状态空间的大小将大大下降。此外,提出了一种知识传输算法以共享不同代理商之间的获得经验,并制定有效的知识融合机制,以融合利用来自其他团队成员所收到的知识的代理商自己的经验。最后,提供了模拟结果以指示所提出的方法在复杂学习任务中的功效。我们已经评估了我们对牧羊化问题的方法,结果表明,通过利用知识转移机制,学习过程加速了,通过基于状态抽象概念产生类似国家的状态空间的大小均下降。
translated by 谷歌翻译
我们为仓库环境中的移动机器人提供基于新颖的强化学习(RL)任务分配和分散的导航算法。我们的方法是针对各种机器人执行各种接送和交付任务的场景而设计的。我们考虑了联合分散任务分配和导航的问题,并提出了解决该问题的两层方法。在更高级别,我们通过根据马尔可夫决策过程制定任务并选择适当的奖励来最大程度地减少总旅行延迟(TTD)来解决任务分配。在较低级别,我们使用基于ORCA的分散导航方案,使每个机器人能够独立执行这些任务,并避免与其他机器人和动态障碍物发生碰撞。我们通过定义较高级别的奖励作为低级导航算法的反馈来结合这些下层和上层。我们在复杂的仓库布局中进行了广泛的评估,并具有大量代理商,并根据近视拾取距离距离最小化和基于遗憾的任务选择,突出了对最先进算法的好处。我们观察到任务完成时间的改善高达14%,并且在计算机器人的无碰撞轨迹方面提高了40%。
translated by 谷歌翻译
最先进的多机构增强学习(MARL)方法为各种复杂问题提供了有希望的解决方案。然而,这些方法都假定代理执行同步的原始操作执行,因此它们不能真正可扩展到长期胜利的真实世界多代理/机器人任务,这些任务固有地要求代理/机器人以异步的理由,涉及有关高级动作选择的理由。不同的时间。宏观行动分散的部分可观察到的马尔可夫决策过程(MACDEC-POMDP)是在完全合作的多代理任务中不确定的异步决策的一般形式化。在本论文中,我们首先提出了MacDec-Pomdps的一组基于价值的RL方法,其中允许代理在三个范式中使用宏观成果功能执行异步学习和决策:分散学习和控制,集中学习,集中学习和控制,以及分散执行的集中培训(CTDE)。在上述工作的基础上,我们在三个训练范式下制定了一组基于宏观行动的策略梯度算法,在该训练范式下,允许代理以异步方式直接优化其参数化策略。我们在模拟和真实的机器人中评估了我们的方法。经验结果证明了我们在大型多代理问题中的方法的优势,并验证了我们算法在学习具有宏观actions的高质量和异步溶液方面的有效性。
translated by 谷歌翻译
This work considers the problem of learning cooperative policies in complex, partially observable domains without explicit communication. We extend three classes of single-agent deep reinforcement learning algorithms based on policy gradient, temporal-difference error, and actor-critic methods to cooperative multi-agent systems. We introduce a set of cooperative control tasks that includes tasks with discrete and continuous actions, as well as tasks that involve hundreds of agents. The three approaches are evaluated against each other using different neural architectures, training procedures, and reward structures. Using deep reinforcement learning with a curriculum learning scheme, our approach can solve problems that were previously considered intractable by most multi-agent reinforcement learning algorithms. We show that policy gradient methods tend to outperform both temporal-difference and actor-critic methods when using feed-forward neural architectures. We also show that recurrent policies, while more difficult to train, outperform feed-forward policies on our evaluation tasks.
translated by 谷歌翻译
多目标自组织追求(SOP)问题已广泛应用,并被认为是一个充满挑战的分布式系统的自组织游戏,在该系统中,智能代理在其中合作追求具有部分观察的多个动态目标。这项工作为分散的多机构系统提出了一个框架,以提高智能代理的搜索和追求能力。我们将一个自组织的系统建模为可观察到的马尔可夫游戏(POMG),具有权力下放,部分观察和非通信的特征。然后将拟议的分布式算法:模糊自组织合作协同进化(FSC2)杠杆化,以解决多目标SOP中的三个挑战:分布式自组织搜索(SOS),分布式任务分配和分布式单目标追踪。 FSC2包括一种协调的多代理深钢筋学习方法,该方法使均匀的代理能够学习天然SOS模式。此外,我们提出了一种基于模糊的分布式任务分配方法,该方法将多目标SOP分解为几个单目标追求问题。合作进化原则用于协调每个单一目标问题的分布式追随者。因此,可以缓解POMG中固有的部分观察和分布式决策的不确定性。实验结果表明,在所有三个子任务中,分布式不传动的多机构协调都具有部分观察结果,而2048 FSC2代理可以执行有效的多目标SOP,其捕获率几乎为100%。
translated by 谷歌翻译
Communication is supposed to improve multi-agent collaboration and overall performance in cooperative Multi-agent reinforcement learning (MARL). However, such improvements are prevalently limited in practice since most existing communication schemes ignore communication overheads (e.g., communication delays). In this paper, we demonstrate that ignoring communication delays has detrimental effects on collaborations, especially in delay-sensitive tasks such as autonomous driving. To mitigate this impact, we design a delay-aware multi-agent communication model (DACOM) to adapt communication to delays. Specifically, DACOM introduces a component, TimeNet, that is responsible for adjusting the waiting time of an agent to receive messages from other agents such that the uncertainty associated with delay can be addressed. Our experiments reveal that DACOM has a non-negligible performance improvement over other mechanisms by making a better trade-off between the benefits of communication and the costs of waiting for messages.
translated by 谷歌翻译
在人工多智能体系中,学习协作政策的能力是基于代理商的沟通技巧,他们必须能够编码从环境中收到的信息,并学习如何与手头任务所要求的其他代理分享它。我们介绍了一个深度加强学习方法,连接驱动的通信(CDC),促进了多种子体协作行为的出现,仅通过经验。代理被建模为加权图的节点,其状态相关的边缘编码可以交换的对方式。我们介绍了一种依赖于图形的关注机制,可以控制代理的传入消息如何加权。此机制完全核对图表所表示的系统的当前状态,并在捕获信息如何在图中流动的扩散过程中构建。图形拓扑未被假定已知先验,但在代理人的观察中动态依赖于代理人,并以端到端的方式与注意机制和政策同时学习。我们的经验结果表明,CDC能够学习有效的协作政策,并可以在合作导航任务上过度执行竞争学习算法。
translated by 谷歌翻译
在多机构系统(例如多机构无人驾驶汽车和多机构自动驾驶水下车辆)中,羊群控制是一个重大问题,可增强代理的合作和安全性。与传统方法相反,多机构增强学习(MARL)更灵活地解决了羊群控制的问题。但是,基于MARL的方法遭受了样本效率低下的影响,因为它们需要从代理与环境之间的相互作用中收集大量的经验。我们提出了一种新颖的方法,该方法对MARL(PWD-MARL)的示范进行了预处理,该方法可以利用以传统方法预处理剂来利用非专家示范。在预审进过程中,代理人同时通过MARL和行为克隆从示范中学习政策,并阻止过度拟合示范。通过对非专家示范进行预处理,PWD-MARL在温暖的开始中提高了在线MAL的样品效率。实验表明,即使发生不良或很少的示威,PWD-MARL在羊群控制问题中提高了样本效率和政策性能。
translated by 谷歌翻译
在多机构强化学习中,沟通对于鼓励代理商之间的合作至关重要。由于网络条件随代理的移动性而变化,并且在传输过程中的随机性变化,因此现实无线网络中的通信可能非常不可靠。我们提出一个框架来通过解决三个基本问题来学习实用的沟通策略:(1)何时:代理商不仅基于消息重要性,而且是无线渠道条件来学习沟通时间。 (2)什么:代理增强了带有无线网络测量结果的消息内容,以更好地选择游戏和通信操作。 (3)如何:代理使用新颖的神经信息编码器来保存从接收到的消息中保留所有信息,而不管消息的数量和顺序如何。与最新的ART相比,在逼真的无线网络设置下模拟标准基准测试,我们在游戏性能,收敛速度和沟通效率方面取得了重大改进。
translated by 谷歌翻译
羊群控制是一个具有挑战性的问题,在维持羊群的同时,需要达到目标位置,并避免了环境中特工之间的障碍和碰撞碰撞。多代理增强学习在羊群控制中取得了有希望的表现。但是,基于传统强化学习的方法需要代理与环境之间的相互作用。本文提出了一项次优政策帮助多代理增强学习算法(SPA-MARL),以提高样本效率。 Spa-Marl直接利用可以通过非学习方法手动设计或解决的先前政策来帮助代理人学习,在这种情况下,该策略的表现可以是最佳的。 SPA-MARL认识到次优政策与本身之间的性能差异,然后模仿次优政策,如果次优政策更好。我们利用Spa-Marl解决羊群控制问题。基于人造潜在领域的传统控制方法用于生成次优政策。实验表明,水疗中心可以加快训练过程,并优于MARL基线和所使用的次优政策。
translated by 谷歌翻译
沟通可以帮助代理商获得有关他人的信息,以便可以学习更好的协调行为。一些现有的工作会与其他人传达预测的未来轨迹,希望能为其他人做些更好的协调能力提供线索。但是,当对代理人同步处理时,有时会发生循环依赖性,因此很难协调决策。在本文中,我们提出了一种新颖的交流方案,顺序通信(SEQCOMM)。 Seqcomm不同步(高级代理在低级阶段之前做出决定),并有两个通信阶段。在谈判阶段,代理通过传达观测的隐藏状态并比较意图的价值来确定决策的优先级,这是通过对环境动态进行建模来获得的。在发射阶段,高级代理商领导着做出决策并与低级代理商进行交流。从理论上讲,我们证明Seqcomm学到的政策可以单调地改善并融合。从经验上讲,我们表明SEQCOMM在各种多机构合作任务中都优于现有方法。
translated by 谷歌翻译
政策梯度方法在多智能体增强学习中变得流行,但由于存在环境随机性和探索代理(即非公平性​​),它们遭受了高度的差异,这可能因信用分配难度而受到困扰。结果,需要一种方法,该方法不仅能够有效地解决上述两个问题,而且需要足够强大地解决各种任务。为此,我们提出了一种新的多代理政策梯度方法,称为强大的本地优势(ROLA)演员 - 评论家。 Rola允许每个代理人将个人动作值函数作为当地评论家,以及通过基于集中评论家的新型集中培训方法来改善环境不良。通过使用此本地批评,每个代理都计算基准,以减少对其策略梯度估计的差异,这导致含有其他代理的预期优势动作值,这些选项可以隐式提高信用分配。我们在各种基准测试中评估ROLA,并在许多最先进的多代理政策梯度算法上显示其鲁棒性和有效性。
translated by 谷歌翻译