本文涉及专业示范的学习安全控制法。我们假设系统动态和输出测量图的适当模型以及相应的错误界限。我们首先提出强大的输出控制屏障功能(ROCBF)作为保证安全的手段,通过控制安全集的前向不变性定义。然后,我们提出了一个优化问题,以从展示安全系统行为的专家演示中学习RocBF,例如,从人类运营商收集的数据。随着优化问题,我们提供可验证条件,可确保获得的Rocbf的有效性。这些条件在数据的密度和学习函数的LipsChitz和Lipshitz和界限常数上说明,以及系统动态和输出测量图的模型。当ROCBF的参数化是线性的,然后,在温和的假设下,优化问题是凸的。我们在自动驾驶模拟器卡拉验证了我们的调查结果,并展示了如何从RGB相机图像中学习安全控制法。
translated by 谷歌翻译
Safety critical systems involve the tight coupling between potentially conflicting control objectives and safety constraints. As a means of creating a formal framework for controlling systems of this form, and with a view toward automotive applications, this paper develops a methodology that allows safety conditions-expressed as control barrier functionsto be unified with performance objectives-expressed as control Lyapunov functions-in the context of real-time optimizationbased controllers. Safety conditions are specified in terms of forward invariance of a set, and are verified via two novel generalizations of barrier functions; in each case, the existence of a barrier function satisfying Lyapunov-like conditions implies forward invariance of the set, and the relationship between these two classes of barrier functions is characterized. In addition, each of these formulations yields a notion of control barrier function (CBF), providing inequality constraints in the control input that, when satisfied, again imply forward invariance of the set. Through these constructions, CBFs can naturally be unified with control Lyapunov functions (CLFs) in the context of a quadratic program (QP); this allows for the achievement of control objectives (represented by CLFs) subject to conditions on the admissible states of the system (represented by CBFs). The mediation of safety and performance through a QP is demonstrated on adaptive cruise control and lane keeping, two automotive control problems that present both safety and performance considerations coupled with actuator bounds.
translated by 谷歌翻译
Learning-enabled control systems have demonstrated impressive empirical performance on challenging control problems in robotics, but this performance comes at the cost of reduced transparency and lack of guarantees on the safety or stability of the learned controllers. In recent years, new techniques have emerged to provide these guarantees by learning certificates alongside control policies -- these certificates provide concise, data-driven proofs that guarantee the safety and stability of the learned control system. These methods not only allow the user to verify the safety of a learned controller but also provide supervision during training, allowing safety and stability requirements to influence the training process itself. In this paper, we provide a comprehensive survey of this rapidly developing field of certificate learning. We hope that this paper will serve as an accessible introduction to the theory and practice of certificate learning, both to those who wish to apply these tools to practical robotics problems and to those who wish to dive more deeply into the theory of learning for control.
translated by 谷歌翻译
收缩理论是一种分析工具,用于研究以均匀的正面矩阵定义的收缩度量下的非自主(即,时变)非线性系统的差动动力学,其存在导致增量指数的必要和充分表征多种溶液轨迹彼此相互稳定性的稳定性。通过使用平方差分长度作为Lyapunov样功能,其非线性稳定性分析向下沸腾以找到满足以表达为线性矩阵不等式的稳定条件的合适的收缩度量,表明可以在众所周知的线性系统之间绘制许多平行线非线性系统理论与收缩理论。此外,收缩理论利用了与比较引理结合使用的指数稳定性的优越稳健性。这产生了基于神经网络的控制和估计方案的急需安全性和稳定性保证,而不借助使用均匀渐近稳定性的更涉及的输入到状态稳定性方法。这种独特的特征允许通过凸优化来系统构造收缩度量,从而获得了由于扰动和学习误差而在外部扰动的时变的目标轨迹和解决方案轨迹之间的距离上的明确指数界限。因此,本文的目的是介绍了收缩理论的课程概述及其在确定性和随机系统的非线性稳定性分析中的优点,重点导出了各种基于学习和数据驱动的自动控制方法的正式鲁棒性和稳定性保证。特别是,我们提供了使用深神经网络寻找收缩指标和相关控制和估计法的技术的详细审查。
translated by 谷歌翻译
This paper provides an introduction and overview of recent work on control barrier functions and their use to verify and enforce safety properties in the context of (optimization based) safety-critical controllers. We survey the main technical results and discuss applications to several domains including robotic systems.
translated by 谷歌翻译
我们为一类不确定的控制型非线性系统提供了一种运动计划算法,该系统可以在使用高维传感器测量值(例如RGB-D图像)和反馈控制循环中的学习感知模块时确保运行时安全性和目标达到性能。首先,给定状态和观察数据集,我们训练一个感知系统,该系统试图从观察结果中倒入状态的一部分,并估计感知错误上的上限,该误差有效,在数据附近有可信赖的域中具有很高的概率。接下来,我们使用收缩理论来设计稳定的状态反馈控制器和收敛的动态观察者,该观察者使用学习的感知系统来更新其状态估计。当该控制器在动力学和不正确状态估计中遇到错误时,我们会在轨迹跟踪误差上得出一个绑定。最后,我们将此绑定到基于采样的运动计划器中,引导它返回可以使用传感器数据在运行时安全跟踪的轨迹。我们展示了我们在4D汽车上模拟的方法,6D平面四极管以及使用RGB(-D)传感器测量的17D操纵任务,这表明我们的方法安全可靠地将系统转向了目标,而无法考虑的基线,这些基线无法考虑。受信任的域或状态估计错误可能不安全。
translated by 谷歌翻译
本文提出了一种基于匹配不确定性的非线性系统的收缩指标和干扰估计的轨迹中心学习控制方法。该方法允许使用广泛的模型学习工具,包括深神经网络,以学习不确定的动态,同时仍然在整个学习阶段提供瞬态跟踪性能的保证,包括没有学习的特殊情况。在所提出的方法中,提出了一种扰动估计法,以估计不确定性的点值,具有预计估计误差限制(EEB)。学习的动态,估计的紊乱和EEB在强大的黎曼能量条件下并入,以计算控制法,即使学习模型较差,也能保证在整个学习阶段的所需轨迹对所需轨迹的指数趋同。另一方面,具有改进的精度,学习的模型可以在高级计划器中结合,以规划更好的性能,例如降低能耗和更短的旅行时间。建议的框架在平面Quadrotor导航示例上验证。
translated by 谷歌翻译
基于学习的控制方案最近表现出了出色的效力执行复杂的任务。但是,为了将它们部署在实际系统中,保证该系统在在线培训和执行过程中将保持安全至关重要。因此,我们需要安全的在线学习框架,能够自主地理论当前的信息是否足以确保安全或需要新的测量。在本文中,我们提出了一个由两个部分组成的框架:首先,在需要时积极收集测量的隔离外检测机制,以确保至少一个安全备份方向始终可供使用;其次,基于高斯的基于过程的概率安全 - 关键控制器可确保系统始终保持安全的可能性。我们的方法通过使用控制屏障功能来利用模型知识,并以事件触发的方式从在线数据流中收集测量,以确保学习的安全至关重要控制器的递归可行性。反过来,这又使我们能够提供具有很高概率的安全集的正式结果,即使在先验未开发的区域中也是如此。最后,我们在自适应巡航控制系统的数值模拟中验证了所提出的框架。
translated by 谷歌翻译
本文开发了一种基于模型的强化学习(MBR)框架,用于在线在线学习无限范围最佳控制问题的价值函数,同时遵循表示为控制屏障功能(CBFS)的安全约束。我们的方法是通过开发一种新型的CBFS,称为Lyapunov样CBF(LCBF),其保留CBFS的有益特性,以开发最微创的安全控制政策,同时也具有阳性半自动等所需的Lyapunov样品质 - 义法。我们展示这些LCBFS如何用于增强基于学习的控制策略,以保证安全性,然后利用这种方法在MBRL设置中开发安全探索框架。我们表明,我们的开发方法可以通过各种数值示例来处理比较法的更通用的安全限制。
translated by 谷歌翻译
非线性自适应控制理论中的一个关键假设是系统的不确定性可以在一组已知基本函数的线性跨度中表示。虽然该假设导致有效的算法,但它将应用限制为非常特定的系统类别。我们介绍一种新的非参数自适应算法,其在参数上学习无限尺寸密度,以取消再现内核希尔伯特空间中的未知干扰。令人惊讶的是,所产生的控制输入承认,尽管其底层无限尺寸结构,但是尽管它的潜在无限尺寸结构实现了其实施的分析表达。虽然这种自适应输入具有丰富和富有敏感性的 - 例如,传统的线性参数化 - 其计算复杂性随时间线性增长,使其比其参数对应力相对较高。利用随机傅里叶特征的理论,我们提供了一种有效的随机实现,该实现恢复了经典参数方法的复杂性,同时可透明地保留非参数输入的表征性。特别地,我们的显式范围仅取决于系统的基础参数,允许我们所提出的算法有效地缩放到高维系统。作为该方法的说明,我们展示了随机近似算法学习由牛顿重力交互的十点批量组成的60维系统的预测模型的能力。
translated by 谷歌翻译
具有安全行为的赋予非线性系统在现代控制中越来越重要。对于必须在动态变化的环境中安全运行的现实生活控制系统,此任务尤其具有挑战性。本文通过建立环境控制障碍功能(ECBFS)的概念,在动态环境中开发了一种安全关键控制框架。即使在输入延迟存在下,该框架也能够保证安全性,通过占系统延迟响应期间环境的演变。潜在的控制合成依赖于预测系统的未来状态和延迟间隔通过延迟间隔,具有稳健的安全保证预测误差。通过简单的自适应巡航控制问题和更复杂的机器人应用在SEGWAY平台上证明了所提出的方法的功效。
translated by 谷歌翻译
我们开发了一种新型的可区分预测控制(DPC),并根据控制屏障功能确保安全性和鲁棒性保证。DPC是一种基于学习的方法,用于获得近似解决方案,以解决明确的模型预测控制(MPC)问题。在DPC中,通过自动分化MPC问题获得的直接策略梯度,通过直接策略梯度进行了脱机优化的预测控制策略。所提出的方法利用了一种新形式的采样数据屏障功能,以在DPC设置中执行离线和在线安全要求,同时仅中断安全集合边界附近的基于神经网络的控制器。在模拟中证明了拟议方法的有效性。
translated by 谷歌翻译
安全限制和最优性很重要,但有时控制器有时相互冲突的标准。虽然这些标准通常与不同的工具单独解决以维持正式保障,但在惩罚失败时,加强学习的常见做法是惩罚,以惩罚为单纯的启发式。我们严格地检查了安全性和最优性与惩罚的关系,并对安全价值函数进行了足够的条件:对给定任务的最佳价值函数,并强制执行安全约束。我们通过强大的二元性证明,揭示这种关系的结构,表明始终存在一个有限的惩罚,引起安全值功能。这种惩罚并不是独特的,但大不束缚:更大的惩罚不会伤害最优性。虽然通常无法计算最低所需的惩罚,但我们揭示了清晰的惩罚,奖励,折扣因素和动态互动的结构。这种洞察力建议实用,理论引导的启发式设计奖励功能,用于控制安全性很重要的控制问题。
translated by 谷歌翻译
基于控制屏障功能(CBF)的安全过滤器已成为自治系统安全至关重要控制的实用工具。这些方法通过价值函数编码安全性,并通过对该值函数的时间导数施加限制来执行安全。但是,在存在输入限制的情况下合成并非过于保守的有效CBF是一个臭名昭著的挑战。在这项工作中,我们建议使用正式验证方法提炼候选CBF,以获得有效的CBF。特别是,我们使用基于动态编程(DP)的可及性分析更新专家合成或备份CBF。我们的框架RefineCBF保证,在每次DP迭代中,获得的CBF至少与先前的迭代一样安全,并收集到有效的CBF。因此,RefineCBF可用于机器人系统。我们证明了我们在模拟中使用各种CBF合成技术来增强安全性和/或降低一系列非线性控制型系统系统的保守性的实用性。
translated by 谷歌翻译
In this work, we propose a collision-free source seeking control framework for unicycle robots traversing an unknown cluttered environment. In this framework, the obstacle avoidance is guided by the control barrier functions (CBF) embedded in quadratic programming and the source seeking control relies solely on the use of on-board sensors that measure signal strength of the source. To tackle the mixed relative degree of the CBF, we proposed three different CBF, namely the zeroing control barrier functions (ZCBF), exponential control barrier functions (ECBF), and reciprocal control barrier functions (RCBF) that can directly be integrated with our recent gradient-ascent source-seeking control law. We provide rigorous analysis of the three different methods and show the efficacy of the approaches in simulations using Matlab, as well as, using a realistic dynamic environment with moving obstacles in Gazebo/ROS.
translated by 谷歌翻译
对自动驾驶车辆的路径跟踪控制可以从深入学习中受益,以应对长期存在的挑战,例如非线性和不确定性。但是,深度神经控制器缺乏安全保证,从而限制了其实际使用。我们提出了一种新的学习方法的新方法,该方法几乎是在神经控制器下为系统设置的正向设置,以定量分析深神经控制器对路径跟踪的安全性。我们设计了基于抽样的学习程序,用于构建候选神经屏障功能,以及利用神经网络的鲁棒性分析的认证程序来确定完全满足屏障条件的区域。我们在学习和认证之间使用对抗性训练循环来优化几乎级词的功能。学习的障碍也可用于通过可及性分析来构建在线安全监视器。我们证明了我们的方法在量化各种模拟环境中神经控制器安全性方面的有效性,从简单的运动学模型到具有高保真车辆动力学模拟的TORCS模拟器。
translated by 谷歌翻译
控制屏障功能(CBF)已被证明是非线性系统安全至关重要控制器设计的强大工具。现有的设计范式不能解决理论(具有连续时间模型的控制器设计)和实践(所得控制器的离散时间采样实现)之间的差距;这可能导致性能不佳,并且违反了硬件实例化的安全性。我们提出了一种方法,通过将采样DATA对应物合成与这些基于CBF的控制器的方法,使用近似离散的时间模型和采样DATA控制屏障函数(SD-CBFS)。使用系统连续时间模型的属性,我们建立了SD-CBF与采样数据系统的实际安全概念之间的关系。此外,我们构建了基于凸优化的控制器,该控制器正式将非线性系统赋予实践中的安全保证。我们证明了这些控制器在模拟中的功效。
translated by 谷歌翻译
对于多面体之间的障碍物躲避开发的控制器是在狭小的空间导航一个具有挑战性的和必要的问题。传统的方法只能制定的避障问题,因为离线优化问题。为了应对这些挑战,我们提出用非光滑控制屏障功能多面体之间的避障,它可以实时与基于QP的优化问题来解决基于二元安全关键最优控制。一种双优化问题被引入到表示被施加到构造控制屏障功能多面体和用于双形式的拉格朗日函数之间的最小距离。我们验证了避开障碍物与在走廊环境受控的L形(沙发形)机器人建议的双配制剂。据我们所知,这是第一次,实时紧避障与非保守的演习是在移动沙发(钢琴)与非线性动力学问题来实现的。
translated by 谷歌翻译
We propose a learning-based robust predictive control algorithm that compensates for significant uncertainty in the dynamics for a class of discrete-time systems that are nominally linear with an additive nonlinear component. Such systems commonly model the nonlinear effects of an unknown environment on a nominal system. We optimize over a class of nonlinear feedback policies inspired by certainty equivalent "estimate-and-cancel" control laws pioneered in classical adaptive control to achieve significant performance improvements in the presence of uncertainties of large magnitude, a setting in which existing learning-based predictive control algorithms often struggle to guarantee safety. In contrast to previous work in robust adaptive MPC, our approach allows us to take advantage of structure (i.e., the numerical predictions) in the a priori unknown dynamics learned online through function approximation. Our approach also extends typical nonlinear adaptive control methods to systems with state and input constraints even when we cannot directly cancel the additive uncertain function from the dynamics. We apply contemporary statistical estimation techniques to certify the system's safety through persistent constraint satisfaction with high probability. Moreover, we propose using Bayesian meta-learning algorithms that learn calibrated model priors to help satisfy the assumptions of the control design in challenging settings. Finally, we show in simulation that our method can accommodate more significant unknown dynamics terms than existing methods and that the use of Bayesian meta-learning allows us to adapt to the test environments more rapidly.
translated by 谷歌翻译
这项工作为时间延迟系统的安全关键控制提供了一个理论框架。控制屏障功能的理论可为无延迟系统提供正式安全保证,扩展到具有状态延迟的系统。引入了控制屏障功能的概念,以实现正式的安全保证,该概念通过在无限尺寸状态空间中定义的安全集的向前不变性。所提出的框架能够在动态和安全状态下处理多个延迟和分布式延迟,并对可证明安全性的控制输入提供了仿射约束。该约束可以纳入优化问题,以合成最佳和可证明的安全控制器。该方法的适用性通过数值仿真示例证明。
translated by 谷歌翻译