Observational studies are rising in importance due to the widespread accumulation of data in fields such as healthcare, education, employment and ecology. We consider the task of answering counterfactual questions such as, "Would this patient have lower blood sugar had she received a different medication?". We propose a new algorithmic framework for counterfactual inference which brings together ideas from domain adaptation and representation learning. In addition to a theoretical justification, we perform an empirical comparison with previous approaches to causal inference from observational data. Our deep learning algorithm significantly outperforms the previous state-of-the-art.
translated by 谷歌翻译
There is intense interest in applying machine learning to problems of causal inference in fields such as healthcare, economics and education. In particular, individual-level causal inference has important applications such as precision medicine. We give a new theoretical analysis and family of algorithms for predicting individual treatment effect (ITE) from observational data, under the assumption known as strong ignorability. The algorithms learn a "balanced" representation such that the induced treated and control distributions look similar. We give a novel, simple and intuitive generalization-error bound showing that the expected ITE estimation error of a representation is bounded by a sum of the standard generalization-error of that representation and the distance between the treated and control distributions induced by the representation. We use Integral Probability Metrics to measure distances between distributions, deriving explicit bounds for the Wasserstein and Maximum Mean Discrepancy (MMD) distances. Experiments on real and simulated data show the new algorithms match or outperform the state-of-the-art.
translated by 谷歌翻译
因果推断能够估计治疗效果(即,治疗结果的因果效果),使各个领域的决策受益。本研究中的一个基本挑战是观察数据的治疗偏见。为了提高对因果推断的观察研究的有效性,基于代表的方法作为最先进的方法表明了治疗效果估计的卓越性能。基于大多数基于表示的方法假设所有观察到的协变量都是预处理的(即,不受治疗影响的影响),并学习这些观察到的协变量的平衡表示,以估算治疗效果。不幸的是,这种假设往往在实践中往往是太严格的要求,因为一些协调因子是通过对治疗的干预进行改变(即,后治疗)来改变。相比之下,从不变的协变量中学到的平衡表示因此偏置治疗效果估计。
translated by 谷歌翻译
因果关系的概念在人类认知中起着重要作用。在过去的几十年中,在许多领域(例如计算机科学,医学,经济学和教育)中,因果推论已经得到很好的发展。随着深度学习技术的发展,它越来越多地用于针对反事实数据的因果推断。通常,深层因果模型将协变量的特征映射到表示空间,然后设计各种客观优化函数,以根据不同的优化方法公正地估算反事实数据。本文重点介绍了深层因果模型的调查,其核心贡献如下:1)我们在多种疗法和连续剂量治疗下提供相关指标; 2)我们从时间开发和方法分类的角度综合了深层因果模型的全面概述; 3)我们协助有关相关数据集和源代码的详细且全面的分类和分析。
translated by 谷歌翻译
对于许多具有观察数据的生物医学应用,估计治疗效果至关重要。特别是,对于许多生物医学研究人员来说,可解释性可解释性。在本文中,我们首先提供理论分析,并在强大的无知性假设下获得平均治疗效果(ATE)估计的偏差的上限。通过利用加权能量距离的吸引力性能得出,我们的上限比文献中报道的更紧密。在理论分析的激励下,我们提出了一个新的目标函数,用于估计使用能量距离平衡评分的ATE,因此不需要正确规范倾向得分模型。我们还利用最近开发的神经添加剂模型来改善用于潜在结果预测的深度学习模型的可解释性。我们通过能量距离平衡评分加权正则化进一步增强了我们提出的模型。在半合成实验中,使用两个基准数据集(即IHDP和ACIC)证明了我们提出的模型比当前最新方法的优势。
translated by 谷歌翻译
大型观察数据越来越多地提供健康,经济和社会科学等学科,研究人员对因果问题而不是预测感兴趣。在本文中,从旨在调查参与学校膳食计划对健康指标的实证研究,研究了使用非参数回归的方法估算异质治疗效果的问题。首先,我们介绍了与观察或非完全随机数据进行因果推断相关的设置和相关的问题,以及如何在统计学习工具的帮助下解决这些问题。然后,我们审查并制定现有最先进的框架的统一分类,允许通过非参数回归模型来估算单个治疗效果。在介绍模型选择问题的简要概述后,我们说明了一些关于三种不同模拟研究的方法的性能。我们通过展示一些关于学校膳食计划数据的实证分析的一些方法的使用来结束。
translated by 谷歌翻译
我们定期考虑在实践中回答反事实问题,例如“糖尿病患者会选择另一种药物,会更好吗?”。观察性研究在回答此类问题的显着性上增长,因为它们的广泛积累和比随机对照试验(RCT)比较容易获得的。最近,一些作品将表示和域的适应性引入了反事实推断。但是,大多数目前的作品都集中在二进制治疗的设置上。他们都没有认为不同治疗的样本量不平衡,尤其是由于固有的用户偏好,某些治疗组中的数据示例相对有限。在本文中,我们为反事实推断设计了一种新的算法框架,从元学习来估算单个治疗效果(元地铁)以填补上述研究空白,尤其是考虑多种不平衡治疗方法。具体而言,我们将反事实推断的治疗组之间的数据发作视为元学习任务。我们从一组有足够样品的源治疗组中训练一个元学习者,并通过梯度下降进行梯度下降,而在目标治疗中样本有限。此外,我们引入了两个互补的损失。一个是多种来源治疗的监督损失。提出了与各个治疗组之间潜在分布对齐的另一个损失,以减少差异。我们在两个现实世界数据集上执行实验,以评估推理准确性和概括能力。实验结果表明,模型元地铁匹配/跑赢大的方法。
translated by 谷歌翻译
因果推论在电子商务和精确医学等各个领域都有广泛的应用,其性能在很大程度上取决于对个体治疗效果(ITE)的准确估计。通常,通过在其各个样品空间中分别对处理和控制响应函数进行建模来预测ITE。但是,这种方法通常会在实践中遇到两个问题,即治疗偏见引起的治疗组和对照组之间的分布分布以及其人口规模的显着样本失衡。本文提出了深层的整个空间跨网络(DESCN),以从端到端的角度进行建模治疗效果。 DESCN通过多任务学习方式捕获了治疗倾向,反应和隐藏治疗效果的综合信息。我们的方法共同学习了整个样品空间中的治疗和反应功能,以避免治疗偏见,并采用中间伪治疗效应预测网络来减轻样品失衡。从电子商务凭证分销业务的合成数据集和大规模生产数据集进行了广泛的实验。结果表明,DESCN可以成功提高ITE估计的准确性并提高提升排名的性能。发布生产数据集和源代码的样本是为了促进社区的未来研究,据我们所知,这是首个大型公共偏见的因果推理数据集。
translated by 谷歌翻译
尽管近期因因果推断领域的进展,迄今为止没有关于从观察数据的收集治疗效应估算的方法。对临床实践的结果是,当缺乏随机试验的结果时,没有指导在真实情景中似乎有效的指导。本文提出了一种务实的方法,以获得从观察性研究的治疗效果的初步但稳健地估算,为前线临床医生提供对其治疗策略的信心程度。我们的研究设计适用于一个公开问题,估算Covid-19密集护理患者的拳击机动的治疗效果。
translated by 谷歌翻译
训练因果效果变分性自身摩托(CEVAE)以预测给定的观察治疗数据的结果,而使用重要性采样均匀的处理分布训练均匀治疗变分性自身培训(UTVAE)。在本文中,我们表明,通过减轻训练训练以测试时间发生的分布换档,使用对观察治疗分布的均匀处理导致更好的因果化推断。我们还探讨了统一和观察治疗分布的组合,推断和生成网络培训目标,以找到更好的培训程序,用于推断治疗效果。实验,我们发现所提出的Utvae在综合效应误差估计比Sycleiny和IHDP数据集上的CEVAE估计的估计是更好的绝对平均处理效果误差和精度。
translated by 谷歌翻译
为目标疾病开发新药物是一项耗时且昂贵的任务,药物重新利用已成为药物开发领域的流行话题。随着许多健康索赔数据可用,已经对数据进行了许多研究。现实世界的数据嘈杂,稀疏,并且具有许多混杂因素。此外,许多研究表明,药物的作用在人群中是异质的。近年来已经出现了许多有关估计异构治疗效果(HTE)(HTE)的高级机器学习模型,并已应用于计量经济学和机器学习社区。这些研究将医学和药物开发视为主要应用领域,但是从HTE方法论到药物开发的转化研究有限。我们旨在将HTE方法介绍到医疗保健领域,并在通过基准实验进行医疗保健行政索赔数据进行基准实验时提供可行性考虑。另外,我们希望使用基准实验来展示如何将模型应用于医疗保健研究时如何解释和评估模型。通过将最近的HTE技术引入生物医学信息学社区的广泛读者,我们希望通过机器学习促进广泛采用因果推断。我们还希望提供HTE具有个性化药物有效性的可行性。
translated by 谷歌翻译
Learning individual-level causal effects from observational data, such as inferring the most effective medication for a specific patient, is a problem of growing importance for policy makers. The most important aspect of inferring causal effects from observational data is the handling of confounders, factors that affect both an intervention and its outcome. A carefully designed observational study attempts to measure all important confounders. However, even if one does not have direct access to all confounders, there may exist noisy and uncertain measurement of proxies for confounders. We build on recent advances in latent variable modeling to simultaneously estimate the unknown latent space summarizing the confounders and the causal effect. Our method is based on Variational Autoencoders (VAE) which follow the causal structure of inference with proxies. We show our method is significantly more robust than existing methods, and matches the state-of-the-art on previous benchmarks focused on individual treatment effects.
translated by 谷歌翻译
This invited review discusses causal learning in the context of robotic intelligence. The paper introduced the psychological findings on causal learning in human cognition, then it introduced the traditional statistical solutions on causal discovery and causal inference. The paper reviewed recent deep causal learning algorithms with a focus on their architectures and the benefits of using deep nets and discussed the gap between deep causal learning and the needs of robotic intelligence.
translated by 谷歌翻译
Causal inference is the process of using assumptions, study designs, and estimation strategies to draw conclusions about the causal relationships between variables based on data. This allows researchers to better understand the underlying mechanisms at work in complex systems and make more informed decisions. In many settings, we may not fully observe all the confounders that affect both the treatment and outcome variables, complicating the estimation of causal effects. To address this problem, a growing literature in both causal inference and machine learning proposes to use Instrumental Variables (IV). This paper serves as the first effort to systematically and comprehensively introduce and discuss the IV methods and their applications in both causal inference and machine learning. First, we provide the formal definition of IVs and discuss the identification problem of IV regression methods under different assumptions. Second, we categorize the existing work on IV methods into three streams according to the focus on the proposed methods, including two-stage least squares with IVs, control function with IVs, and evaluation of IVs. For each stream, we present both the classical causal inference methods, and recent developments in the machine learning literature. Then, we introduce a variety of applications of IV methods in real-world scenarios and provide a summary of the available datasets and algorithms. Finally, we summarize the literature, discuss the open problems and suggest promising future research directions for IV methods and their applications. We also develop a toolkit of IVs methods reviewed in this survey at https://github.com/causal-machine-learning-lab/mliv.
translated by 谷歌翻译
传统的因果推理方法利用观察性研究数据来估计潜在治疗的观察到的差异和未观察到的结果,称为条件平均治疗效果(CATE)。然而,凯特就对应于仅第一刻的比较,因此可能不足以反映治疗效果的全部情况。作为替代方案,估计全部潜在结果分布可以提供更多的见解。但是,估计治疗效果的现有方法潜在的结果分布通常对这些分布施加限制性或简单的假设。在这里,我们提出了合作因果网络(CCN),这是一种新颖的方法,它通过学习全部潜在结果分布而超出了CATE的估计。通过CCN框架估算结果分布不需要对基础数据生成过程的限制性假设。此外,CCN促进了每种可能处理的效用的估计,并允许通过效用函数进行特定的特定变异。 CCN不仅将结果估计扩展到传统的风险差异之外,而且还可以通过定义灵活的比较来实现更全面的决策过程。根据因果文献中通常做出的假设,我们表明CCN学习了渐近捕获真正潜在结果分布的分布。此外,我们提出了一种调整方法,该方法在经验上可以有效地减轻观察数据中治疗组之间的样本失衡。最后,我们评估了CCN在多个合成和半合成实验中的性能。我们证明,与现有的贝叶斯和深层生成方法相比,CCN学会了改进的分布估计值,以及对各种效用功能的改进决策。
translated by 谷歌翻译
Causal learning has attracted much attention in recent years because causality reveals the essential relationship between things and indicates how the world progresses. However, there are many problems and bottlenecks in traditional causal learning methods, such as high-dimensional unstructured variables, combinatorial optimization problems, unknown intervention, unobserved confounders, selection bias and estimation bias. Deep causal learning, that is, causal learning based on deep neural networks, brings new insights for addressing these problems. While many deep learning-based causal discovery and causal inference methods have been proposed, there is a lack of reviews exploring the internal mechanism of deep learning to improve causal learning. In this article, we comprehensively review how deep learning can contribute to causal learning by addressing conventional challenges from three aspects: representation, discovery, and inference. We point out that deep causal learning is important for the theoretical extension and application expansion of causal science and is also an indispensable part of general artificial intelligence. We conclude the article with a summary of open issues and potential directions for future work.
translated by 谷歌翻译
Observational studies have recently received significant attention from the machine learning community due to the increasingly available non-experimental observational data and the limitations of the experimental studies, such as considerable cost, impracticality, small and less representative sample sizes, etc. In observational studies, de-confounding is a fundamental problem of individualised treatment effects (ITE) estimation. This paper proposes disentangled representations with adversarial training to selectively balance the confounders in the binary treatment setting for the ITE estimation. The adversarial training of treatment policy selectively encourages treatment-agnostic balanced representations for the confounders and helps to estimate the ITE in the observational studies via counterfactual inference. Empirical results on synthetic and real-world datasets, with varying degrees of confounding, prove that our proposed approach improves the state-of-the-art methods in achieving lower error in the ITE estimation.
translated by 谷歌翻译
我们引入了一个灵活的框架,该框架可为因果推理产生高质量的几乎享用的匹配。匹配中的大多数先前工作都使用临时距离指标,通常会导致质量差,尤其是在有无关的协变量时。在这项工作中,我们学习了一个可解释的距离度量,以实现更高质量的匹配。学到的距离度量标准根据每个协变量对结果预测的贡献延伸协变量空间:这种拉伸意味着,对重要协变量的不匹配比对无关协变量的不匹配的惩罚更大。我们学习柔性距离指标的能力会导致匹配,这些匹配对于估计有条件的平均治疗效果有用。
translated by 谷歌翻译
由于选择偏差,观察数据估算平均治疗效果(ATE)是有挑战性的。现有作品主要以两种方式应对这一挑战。一些研究人员建议构建满足正交条件的分数函数,该函数确保已建立的估计量“正交”更加健壮。其他人探索表示模型,以实现治疗组和受控群体之间的平衡表示。但是,现有研究未能进行1)在表示空间中歧视受控单元以避免过度平衡的问题; 2)充分利用“正交信息”。在本文中,我们提出了一个基于最新协变量平衡表示方法和正交机器学习理论的中等平衡的表示学习(MBRL)框架。该框架可保护表示形式免于通过多任务学习过度平衡。同时,MBRL将噪声正交性信息纳入培训和验证阶段,以实现更好的ATE估计。与现有的最新方法相比,基准和模拟数据集的全面实验表明,我们方法对治疗效应估计的优越性和鲁棒性。
translated by 谷歌翻译
观察数据中估算单个治疗效果(ITE)在许多领域,例如个性化医学等领域。但是,实际上,治疗分配通常被未观察到的变量混淆,因此引入了偏见。消除偏见的一种补救措施是使用仪器变量(IVS)。此类环境在医学中广泛存在(例如,将合规性用作二进制IV的试验)。在本文中,我们提出了一个新颖的,可靠的机器学习框架,称为MRIV,用于使用二进制IV估算ITES,从而产生无偏见的ITE估计器。与以前的二进制IV的工作不同,我们的框架通过伪结果回归直接估算了ITE。 (1)我们提供了一个理论分析,我们表明我们的框架产生了多重稳定的收敛速率:即使几个滋扰估计器的收敛缓慢,我们的ITE估计器也会达到快速收敛。 (2)我们进一步表明,我们的框架渐近地优于最先进的插件IV方法,以进行ITE估计。 (3)我们以理论结果为基础,并提出了一种使用二进制IVS的ITE估算的定制的,称为MRIV-NET的深度神经网络结构。在各种计算实验中,我们从经验上证明了我们的MRIV-NET实现最先进的性能。据我们所知,我们的MRIV是第一个机器学习框架,用于估算显示出倍增功能的二进制IV设置。
translated by 谷歌翻译