从像素中学习控制很难进行加固学习(RL)代理,因为表示和政策学习是交织在一起的。以前的方法通过辅助表示任务来解决这个问题,但他们要么不考虑问题的时间方面,要么仅考虑单步过渡。取而代之的是,我们提出了层次结构$ k $ -Step Letent(HKSL),这是一项辅助任务,通过向前模型的层次结构来学习表示形式,该层次结构以不同的步骤跳过的不同幅度运行,同时也学习在层次结构中的级别之间进行交流。我们在30个机器人控制任务的套件中评估了HKSL,发现HKSL要么比几个当前基线更快地达到更高的发作回报或收敛到最高性能。此外,我们发现,HKSL层次结构中的水平可以学会专注于代理行动的长期或短期后果,从而为下游控制政策提供更有信息的表示。最后,我们确定层次结构级别之间的通信渠道基于通信过程的两侧组织信息,从而提高了样本效率。
translated by 谷歌翻译
通过提供丰富的训练信号来塑造代理人的潜国空间,建模世界可以使机器人学习受益。然而,在诸如图像之类的高维观察空间上的无约束环境中学习世界模型是具有挑战性的。一个难度来源是存在无关但难以模范的背景干扰,以及不重要的任务相关实体的视觉细节。我们通过学习经常性潜在的动态模型来解决这个问题,该模型对比预测下一次观察。即使使用同时的相机,背景和色调分散,这种简单的模型也会导致令人惊讶的鲁棒机器人控制。我们优于替代品,如双刺激方法,这些方法施加来自未来奖励或未来最佳行为的不同性措施。我们在分散注意力控制套件上获得最先进的结果,是基于像素的机器人控制的具有挑战性的基准。
translated by 谷歌翻译
人类是熟练的导航员:我们恰当地在新的地方进行了操纵,意识到我们回到以前见过的位置,甚至可以想到经历我们从未参观过的部分环境的捷径。另一方面,基于模型的强化学习中的当前方法与从训练分布中概括环境动态的努力。我们认为,两个原则可以帮助弥合这一差距:潜在的学习和简约的动态。人类倾向于以简单的术语来思考环境动态 - 我们认为轨迹不是指我们期望在路径上看到的东西,而是在抽象的潜在空间中,其中包含有关该位置的空间坐标的信息。此外,我们假设在环境的新颖部分中四处走动的工作方式与我们所熟悉的部分相同。这两个原则在串联中共同起作用:在潜在空间中,动态表现出了简约的特征。我们开发了一种学习这种简约动态的模型。使用一个变异目标,我们的模型经过培训,可以使用本地线性转换在潜在空间中重建经验丰富的过渡,同时鼓励尽可能少地调用不同的变换。使用我们的框架,我们演示了在一系列政策学习和计划任务中学习简化潜在动态模型的实用性。
translated by 谷歌翻译
当相互作用数据稀缺时,深厚的增强学习(RL)算法遭受了严重的性能下降,这限制了其现实世界的应用。最近,视觉表示学习已被证明是有效的,并且有望提高RL样品效率。这些方法通常依靠对比度学习和数据扩展来训练状态预测的过渡模型,这与在RL中使用模型的方式不同 - 基于价值的计划。因此,学到的模型可能无法与环境保持良好状态并产生一致的价值预测,尤其是当国家过渡不是确定性的情况下。为了解决这个问题,我们提出了一种称为价值一致表示学习(VCR)的新颖方法,以学习与决策直接相关的表示形式。更具体地说,VCR训练一个模型,以预测基于当前的状态(也称为“想象的状态”)和一系列动作。 VCR没有将这个想象中的状态与环境返回的真实状态保持一致,而是在两个状态上应用$ q $ - 价值头,并获得了两个行动值分布。然后将距离计算并最小化以迫使想象的状态产生与真实状态相似的动作值预测。我们为离散和连续的动作空间开发了上述想法的两个实现。我们对Atari 100K和DeepMind Control Suite基准测试进行实验,以验证其提高样品效率的有效性。已经证明,我们的方法实现了无搜索RL算法的新最新性能。
translated by 谷歌翻译
We propose a simple data augmentation technique that can be applied to standard model-free reinforcement learning algorithms, enabling robust learning directly from pixels without the need for auxiliary losses or pre-training. The approach leverages input perturbations commonly used in computer vision tasks to transform input examples, as well as regularizing the value function and policy. Existing model-free approaches, such as Soft Actor-Critic (SAC) [22], are not able to train deep networks effectively from image pixels. However, the addition of our augmentation method dramatically improves SAC's performance, enabling it to reach state-of-the-art performance on the DeepMind control suite, surpassing model-based [23,38,24] methods and recently proposed contrastive learning [50]. Our approach, which we dub DrQ: Data-regularized Q, can be combined with any model-free reinforcement learning algorithm. We further demonstrate this by applying it to DQN [43] and significantly improve its data-efficiency on the Atari 100k [31] benchmark. An implementation can be found at https://sites. google.com/view/data-regularized-q.
translated by 谷歌翻译
We present CURL: Contrastive Unsupervised Representations for Reinforcement Learning. CURL extracts high-level features from raw pixels using contrastive learning and performs offpolicy control on top of the extracted features. CURL outperforms prior pixel-based methods, both model-based and model-free, on complex tasks in the DeepMind Control Suite and Atari Games showing 1.9x and 1.2x performance gains at the 100K environment and interaction steps benchmarks respectively. On the DeepMind Control Suite, CURL is the first image-based algorithm to nearly match the sample-efficiency of methods that use state-based features. Our code is open-sourced and available at https://www. github.com/MishaLaskin/curl.
translated by 谷歌翻译
在许多控制问题中,包括视觉,可以从场景中对象的位置推断出最佳控制。可以使用特征点表示该信息,该特征点是输入图像的学习特征映射中的空间位置列表。以前的作品表明,使用无监督的预培训或人类监督学习的功能要点可以为控制任务提供良好的功能。在本文中,我们表明,可以在结束于结束的情况下学习有效的特征点表示,而无需无监督的预训练,解码器或额外损失。我们所提出的架构包括一个可怜的特征点提取器,其将估计的特征点的坐标直接馈送到软演员 - 批评者代理。所提出的算法对深度控制套件任务的最先进的算法产生了竞争力。
translated by 谷歌翻译
数据驱动的模型预测控制比无模型方法具有两个关键优势:通过模型学习提高样本效率的潜力,并且作为计划增加的计算预算的更好性能。但是,在漫长的视野上进行计划既昂贵又挑战,以获得准确的环境模型。在这项工作中,我们结合了无模型和基于模型的方法的优势。我们在短范围内使用学习的面向任务的潜在动力学模型进行局部轨迹优化,并使用学习的终端值函数来估计长期回报,这两者都是通过时间差异学习共同学习的。我们的TD-MPC方法比在DMCONTROL和META-WORLD的状态和基于图像的连续控制任务上实现了卓越的样本效率和渐近性能。代码和视频结果可在https://nicklashansen.github.io/td-mpc上获得。
translated by 谷歌翻译
具有相同任务的不同环境的概括对于在实际场景中成功应用视觉增强学习(RL)至关重要。然而,从高维观察中,视觉干扰(在真实场景中很常见)可能会对视觉RL中学习的表示形式有害,从而降低概括的性能。为了解决这个问题,我们提出了一种新颖的方法,即特征奖励序列预测(Cresp),以通过学习奖励序列分布(RSD)提取与任务相关的信息,因为奖励信号在RL中与任务相关,并且不变为Visual分心。具体而言,要通过RSD有效捕获与任务相关的信息,Cresp引入了一个辅助任务(即预测RSD的特征功能),以学习与任务相关的表示,因为我们可以很好地通过利用高维分布来实现高维分布相应的特征函数。实验表明,Cresp显着提高了在看不见的环境上的概括性能,在具有不同视觉分散注意力的DeepMind Control任务上表现优于几个最新的。
translated by 谷歌翻译
需要长马计划和持续控制能力的问题对现有的强化学习剂构成了重大挑战。在本文中,我们介绍了一种新型的分层增强学习代理,该学习代理将延时的技能与持续控制的技能与远期模型联系起来,以象征性的分离环境的计划进行计划。我们认为我们的代理商符合符号效应的多样化技能。我们制定了一种客观且相应的算法,该算法通过已知的抽象来通过内在动机来无监督学习各种技能。这些技能是通过符号前向模型共同学习的,该模型捕获了国家抽象中技能执行的影响。训练后,我们可以使用向前模型来利用符号动作的技能来进行长途计划,并随后使用学识渊博的连续行动控制技能执行计划。拟议的算法学习了技能和前瞻性模型,可用于解决复杂的任务,这些任务既需要连续控制和长效计划功能,却具有很高的成功率。它与其他平坦和分层的增强学习基线代理相比,并通过真正的机器人成功证明。
translated by 谷歌翻译
Learned world models summarize an agent's experience to facilitate learning complex behaviors. While learning world models from high-dimensional sensory inputs is becoming feasible through deep learning, there are many potential ways for deriving behaviors from them. We present Dreamer, a reinforcement learning agent that solves long-horizon tasks from images purely by latent imagination. We efficiently learn behaviors by propagating analytic gradients of learned state values back through trajectories imagined in the compact state space of a learned world model. On 20 challenging visual control tasks, Dreamer exceeds existing approaches in data-efficiency, computation time, and final performance.
translated by 谷歌翻译
随着我们日常环境中机器人的存在越来越多,提高社交技能至关重要。尽管如此,社会机器人技术仍然面临许多挑战。一种瓶颈是,由于社会规范的强烈取决于环境,因此需要经常适应机器人行为。例如,与办公室的工人相比,机器人应更仔细地在医院的患者周围进行仔细的导航。在这项工作中,我们将元强化学习(META-RL)作为潜在解决方案进行了研究。在这里,机器人行为是通过强化学习来学习的,需要选择奖励功能,以便机器人学习适合给定环境的行为。我们建议使用一种变异元过程,该过程迅速使机器人的行为适应新的奖励功能。结果,给定一个新的环境,可以快速评估不同的奖励功能,并选择适当的奖励功能。该过程学习奖励函数的矢量表示和可以在这种表示形式下进行条件的元政策。从新的奖励函数中进行观察,该过程确定了其表示形式,并条件元元素对其进行了条件。在研究程序的功能时,我们意识到它遭受了后塌陷的困扰,在表示表示中只有一个尺寸的子集编码有用的信息,从而导致性能降低。我们的第二个贡献是径向基函数(RBF)层,部分减轻了这种负面影响。 RBF层将表示形式提升到较高的维空间,这对于元容器更容易利用。我们证明了RBF层的兴趣以及在四个机器人模拟任务上对社会机器人技术的使用元素使用。
translated by 谷歌翻译
这项工作探讨了如何从具有深度加强学习方法的基于图像的观测中学习鲁棒和最广泛的状态表示。解决了在现有的Bisimulation度量工作中的计算复杂性,严格假设和表示崩溃挑战,我们设计了简单的状态表示(SIMSR)运算符,该操作员实现了等效功能,同时通过与Bisimulation度量进行比较来降低顺序的复杂性。SIMSR使我们能够设计一种基于随机逼近的方法,该方法几乎可以从观察到潜在表示空间的观察中学习映射函数(编码器)。除了理论分析外,我们在Visual Mujoco任务中尝试并与最近的最先进解决方案进行了实验。结果表明,我们的模型通常达到更好的性能,具有更好的鲁棒性和良好的概率。
translated by 谷歌翻译
虽然由强化学习(RL)训练的代理商可以直接解决越来越具有挑战性的任务,但概括到新颖环境的学习技能仍然非常具有挑战性。大量使用数据增强是一种有助于改善RL的泛化的有希望的技术,但经常发现它降低样品效率,甚至可以导致发散。在本文中,我们在常见的脱离政策RL算法中使用数据增强时调查不稳定性的原因。我们识别两个问题,均植根于高方差Q-targets。基于我们的研究结果,我们提出了一种简单但有效的技术,可以在增强下稳定这类算法。我们在基于Deepmind Control Suite的基准系列和机器人操纵任务中使用扫描和视觉变压器(VIT)对基于图像的RL进行广泛的实证评估。我们的方法极大地提高了增强下的呼声集的稳定性和样本效率,并实现了在具有看不见的视野视觉效果的环境中的图像的RL的最先进方法竞争的普遍化结果。我们进一步表明,我们的方法与基于Vit的亚体系结构的RL缩放,并且数据增强在此设置中可能尤为重要。
translated by 谷歌翻译
我们在这项工作中的主要贡献是一个实证发现随机通用价值函数(GVF),即深度动作条件预测 - 随机观察到他们预测的观察的特征以及预测的操作顺序中 - 为强化学习(RL)问题形成良好的辅助任务。特别是,我们表明当用作辅助任务时,随机深度动作条件预测产生了产生控制性能的状态表示,其具有与最先进的手工制作的辅助任务相同的辅助辅助任务,如atari中的值预测,像素控制和卷曲和DeepMind实验室任务。在另一组实验中,我们将梯度从网络的RL部分停止到网络的状态代表性学习部分,也许令人惊讶的是,单独的辅助任务足以学习州表示足以超过最终的状态 - 训练的演员 - 评论家基线。我们在https://github.com/hwhitetooth/random_gvs ovensourced我们的代码。
translated by 谷歌翻译
How to learn an effective reinforcement learning-based model for control tasks from high-level visual observations is a practical and challenging problem. A key to solving this problem is to learn low-dimensional state representations from observations, from which an effective policy can be learned. In order to boost the learning of state encoding, recent works are focused on capturing behavioral similarities between state representations or applying data augmentation on visual observations. In this paper, we propose a novel meta-learner-based framework for representation learning regarding behavioral similarities for reinforcement learning. Specifically, our framework encodes the high-dimensional observations into two decomposed embeddings regarding reward and dynamics in a Markov Decision Process (MDP). A pair of meta-learners are developed, one of which quantifies the reward similarity and the other quantifies dynamics similarity over the correspondingly decomposed embeddings. The meta-learners are self-learned to update the state embeddings by approximating two disjoint terms in on-policy bisimulation metric. To incorporate the reward and dynamics terms, we further develop a strategy to adaptively balance their impacts based on different tasks or environments. We empirically demonstrate that our proposed framework outperforms state-of-the-art baselines on several benchmarks, including conventional DM Control Suite, Distracting DM Control Suite and a self-driving task CARLA.
translated by 谷歌翻译
尽管深度强化学习(RL)最近取得了许多成功,但其方法仍然效率低下,这使得在数据方面解决了昂贵的许多问题。我们的目标是通过利用未标记的数据中的丰富监督信号来进行学习状态表示,以解决这一问题。本文介绍了三种不同的表示算法,可以访问传统RL算法使用的数据源的不同子集使用:(i)GRICA受到独立组件分析(ICA)的启发,并训练深层神经网络以输出统计独立的独立特征。输入。 Grica通过最大程度地减少每个功能与其他功能之间的相互信息来做到这一点。此外,格里卡仅需要未分类的环境状态。 (ii)潜在表示预测(LARP)还需要更多的上下文:除了要求状态作为输入外,它还需要先前的状态和连接它们的动作。该方法通过预测当前状态和行动的环境的下一个状态来学习状态表示。预测器与图形搜索算法一起使用。 (iii)重新培训通过训练深层神经网络来学习国家表示,以学习奖励功能的平滑版本。该表示形式用于预处理输入到深度RL,而奖励预测指标用于奖励成型。此方法仅需要环境中的状态奖励对学习表示表示。我们发现,每种方法都有其优势和缺点,并从我们的实验中得出结论,包括无监督的代表性学习在RL解决问题的管道中可以加快学习的速度。
translated by 谷歌翻译
我们提出了一种层次结构的增强学习方法Hidio,可以以自我监督的方式学习任务不合时宜的选项,同时共同学习利用它们来解决稀疏的奖励任务。与当前倾向于制定目标的低水平任务或预定临时的低级政策不同的层次RL方法不同,Hidio鼓励下级选项学习与手头任务无关,几乎不需要假设或很少的知识任务结构。这些选项是通过基于选项子对象的固有熵最小化目标来学习的。博学的选择是多种多样的,任务不可能的。在稀疏的机器人操作和导航任务的实验中,Hidio比常规RL基准和两种最先进的层次RL方法,其样品效率更高。
translated by 谷歌翻译
在本文中,我们介绍了潜在的探索(LGE),这是一种基于探索加固学习(RL)的探索范式的简单而通用的方法。最初引入了Go-explore,并具有强大的域知识约束,以将状态空间划分为单元。但是,在大多数实际情况下,从原始观察中汲取域知识是复杂而乏味的。如果细胞分配不足以提供信息,则可以完全无法探索环境。我们认为,可以通过利用学习的潜在表示,可以将Go-explore方法推广到任何环境,而无需细胞。因此,我们表明LGE可以灵活地与学习潜在表示的任何策略相结合。我们表明,LGE虽然比Go-explore更简单,但在多个硬探索环境上纯粹的探索方面,更强大,并且优于所有最先进的算法。 LGE实现可在https://github.com/qgallouedec/lge上作为开源。
translated by 谷歌翻译
在现实世界的机器人技术应用中,强化学习(RL)代理通常无法推广到训练过程中未观察到的环境变化。对于基于图像的RL而言,此问题已加强,其中一个变量(例如背景颜色)的更改可以更改图像中的许多像素,并且又可以改变图像代理的内部表示中的所有值。为了了解更多可靠的表示形式,我们引入了时间分离(TED),这是一项自制的辅助任务,可通过RL观察的顺序性质导致分离表示表示。我们从经验上发现,与最先进的表示方法相比,使用TED作为辅助任务的RL算法更快地适应了通过持续培训的环境变量的变化。由于表示形式的分解结构,我们还发现,经过TED训练的策略可以更好地概括地看不见的变量值与任务无关(例如背景颜色)以及影响最佳策略(例如目标目标位置)的变量值的看不见值。
translated by 谷歌翻译