由于领导者的动态信息对所有跟随节点未知,所以基于知识的非线性多种代理系统的同步问题是具有挑战性的。本文提出了一类非线性领导系统的基于学习的完全分布式观察者,可以同时学习领导者的动态和状态。这里考虑的领导者动态不需要有界雅各的矩阵。基于基于学习的分布式观察者,我们进一步综合了一种自适应分布式控制法,用于解决经受不确定非线性领导系统的多个Euler-Lagrange系统的前导次的同步问题。结果由模拟示例说明。
translated by 谷歌翻译
在非线性和不确定动态的情况下,多种自动水下车辆(AUV)的共识形成跟踪是机器人技术的一个挑战性问题。为了应对这一挑战,本文提出了分布式生物启发的滑动模式控制器。首先,提出了常规的滑动模式控制器(SMC),并根据图理论解决共识问题。接下来,为了解决SMC方案中的高频聊天问题并同时提高噪声的鲁棒性,引入了生物启发的方法,其中采用神经动态模型来替换传统滑动模式合成的非线性符号或饱和功能控制器。此外,在Lyapunov稳定性理论的存在下,在存在有界的集体干扰的情况下证明了所得闭环系统的输入到状态稳定性。最后,进行了仿真实验以证明所提出的分布式形成控制方案的有效性。
translated by 谷歌翻译
对于不确定的多个输入多输出(MIMO)非线性系统,实现渐近跟踪是不平凡的,并且大多数现有方法通常需要某些可控性条件,如果涉及意外的执行器故障,这些条件是相当限制性的,甚至是不切实际的。在本说明中,我们提出了一种能够实现具有较不保守(更实用)可控性条件的零误差稳态跟踪的方法。通过将新颖的Nussbaum增益技术和一些积极的集成函数纳入控制设计,我们为系统开发了强大的自适应渐近跟踪控制方案,随着时变的控制增益未知其幅度和方向。通过诉诸某些可行的辅助矩阵的存在,进一步放松了当前的最新可控性条件,从而扩大了可以在拟议的控制方案中考虑的系统类别。所有闭环信号均被确保在全球范围内最终均匀界定。此外,这种控制方法进一步扩展到涉及间歇性执行器断层以及适用于机器人系统的情况。最后,进行了模拟研究以证明该方法的有效性和灵活性。
translated by 谷歌翻译
我们开发了一种基于学习的基于学习算法,用于由未知,非线性动力学管理的网络多智能体系的分布式形成控制。大多数现有算法都假设用于未知动态术语或度假术的某些参数表单,以便不必要地提供大控制输入,以便提供理论保证。该算法通过在两步过程中与自适应控制集成基于神经网络的学习,避免了这些缺点。在算法的第一步中,每个代理使用与形成任务和代理参数的集合对应的训练数据来学习表示为神经网络的控制器。通过改变名义代理参数和手头任务的形成规范来导出这些参数和任务。在算法的第二步骤中,每个代理将训练的神经网络包含到在线和自适应控制策略中,使得多代理闭环系统的行为满足用户定义的形成任务。在每个代理使用其相邻代理中的本地信息的意义上分发了学习阶段和自适应控制策略。该算法不使用关于代理的未知动态术语或任何近似方案的任何先验信息。我们为实现形成任务提供正式的理论保障。
translated by 谷歌翻译
在本文中,我们考虑了分布式多机器人系统(MRSS)的两个耦合问题,与有限的视野(FOV)传感器协调:交互的自适应调整和传感器攻击的拒绝。首先,分布式控制框架(例如,潜在字段)的典型缺点是整体系统行为对分配给相对交互的增益非常敏感。其次,有限的FOV传感器MRSS可以更容易受到针对他们的FOV的传感器攻击,因此必须适应这种攻击。基于这些缺点,我们提出了一个全面的解决方案,将自适应增益调整和攻击恢复能力结合在拓扑控制中,为有限的FOVS拓扑控制问题。具体地,我们首先基于满足标称成对相互作用来得出自适应增益调谐方案,这产生了机器人邻域中的相互作用强度的动态平衡。然后,我们通过采用静态输出反馈技术来模拟附加传感器和执行器攻击(或故障)并导出H无限控制协议,保证受攻击(故障)信号引起的误差的界限L2增益。最后,提供了使用ROS Gazebo的仿真结果来支持我们的理论发现。
translated by 谷歌翻译
这项工作提出了一种基于(几乎)全局收敛到所需形状的双极坐标的新型二维形成控制方案(一类微型无环持续图)。规定的绩效控制被用来设计一项分散的控制法,该法律避免了奇异性并引入了针对外部干扰的鲁棒性,同时确保了闭环系统的预定义瞬态和稳态性能。此外,结果表明,所提出的形成控制方案可以同时处理编队操作,缩放和方向规范。此外,拟议的控制法在代理商的任意定向的本地坐标框架中仅使用低成本板视力传感器可以实现,这有利于实际应用。最后,一项编队操纵模拟研究验证了所提出的方法。
translated by 谷歌翻译
非线性自适应控制理论中的一个关键假设是系统的不确定性可以在一组已知基本函数的线性跨度中表示。虽然该假设导致有效的算法,但它将应用限制为非常特定的系统类别。我们介绍一种新的非参数自适应算法,其在参数上学习无限尺寸密度,以取消再现内核希尔伯特空间中的未知干扰。令人惊讶的是,所产生的控制输入承认,尽管其底层无限尺寸结构,但是尽管它的潜在无限尺寸结构实现了其实施的分析表达。虽然这种自适应输入具有丰富和富有敏感性的 - 例如,传统的线性参数化 - 其计算复杂性随时间线性增长,使其比其参数对应力相对较高。利用随机傅里叶特征的理论,我们提供了一种有效的随机实现,该实现恢复了经典参数方法的复杂性,同时可透明地保留非参数输入的表征性。特别地,我们的显式范围仅取决于系统的基础参数,允许我们所提出的算法有效地缩放到高维系统。作为该方法的说明,我们展示了随机近似算法学习由牛顿重力交互的十点批量组成的60维系统的预测模型的能力。
translated by 谷歌翻译
本文介绍了一类时变植物的自适应控制的新参数估计算法。该算法的主要特征是时变的学习速率的矩阵,其使得每当满足激励条件时,使参数估计误差轨迹能够朝向紧凑型朝向紧凑型呈现快速。该算法用于在存在未知参数的大类问题中,并且是时变的。结果表明,该算法保证了系统的状态和参数误差的全局界限,并避免了用于构造密钥回归信号的经常使用过滤方法。另外,在存在有限和持久的激励的情况下,提供了这些误差趋向于紧凑型朝向紧凑型趋向于紧凑型的时间间隔。与时变忘记因素相比,投影运算符用于确保学习率矩阵的界限。提供了数值模拟以补充理论分析。
translated by 谷歌翻译
收缩理论是一种分析工具,用于研究以均匀的正面矩阵定义的收缩度量下的非自主(即,时变)非线性系统的差动动力学,其存在导致增量指数的必要和充分表征多种溶液轨迹彼此相互稳定性的稳定性。通过使用平方差分长度作为Lyapunov样功能,其非线性稳定性分析向下沸腾以找到满足以表达为线性矩阵不等式的稳定条件的合适的收缩度量,表明可以在众所周知的线性系统之间绘制许多平行线非线性系统理论与收缩理论。此外,收缩理论利用了与比较引理结合使用的指数稳定性的优越稳健性。这产生了基于神经网络的控制和估计方案的急需安全性和稳定性保证,而不借助使用均匀渐近稳定性的更涉及的输入到状态稳定性方法。这种独特的特征允许通过凸优化来系统构造收缩度量,从而获得了由于扰动和学习误差而在外部扰动的时变的目标轨迹和解决方案轨迹之间的距离上的明确指数界限。因此,本文的目的是介绍了收缩理论的课程概述及其在确定性和随机系统的非线性稳定性分析中的优点,重点导出了各种基于学习和数据驱动的自动控制方法的正式鲁棒性和稳定性保证。特别是,我们提供了使用深神经网络寻找收缩指标和相关控制和估计法的技术的详细审查。
translated by 谷歌翻译
在本文中,我们提出了一个新型的非线性观察者,称为神经观察者,以通过将神经网络(NN)引入观察者的设计,以实现线性时间传播(LTI)系统的观察任务和不确定的非线性系统。通过探索NN代表向NN映射矢量的方法,我们从LTI和不确定的非线性系统中得出了稳定性分析(例如,指数收敛速率),这些系统仅使用线性矩阵不平等(LMIS)为解决观察问题铺平了道路。值得注意的是,为不确定系统设计的神经观察者基于主动扰动拒绝控制(ADRC)的意识形态,该思想可以实时测量不确定性。 LMI结果也很重要,因为我们揭示了LMI溶液存在系统矩阵的可观察性和可控性。最后,我们在三个模拟案例上验证神经观察者的可用性,包括X-29A飞机模型,非线性摆和四轮转向车辆。
translated by 谷歌翻译
本文开发了一种基于模型的强化学习(MBR)框架,用于在线在线学习无限范围最佳控制问题的价值函数,同时遵循表示为控制屏障功能(CBFS)的安全约束。我们的方法是通过开发一种新型的CBFS,称为Lyapunov样CBF(LCBF),其保留CBFS的有益特性,以开发最微创的安全控制政策,同时也具有阳性半自动等所需的Lyapunov样品质 - 义法。我们展示这些LCBFS如何用于增强基于学习的控制策略,以保证安全性,然后利用这种方法在MBRL设置中开发安全探索框架。我们表明,我们的开发方法可以通过各种数值示例来处理比较法的更通用的安全限制。
translated by 谷歌翻译
本文提出了一种新型的固定时间积分滑动模式控制器,以用于增强物理人类机器人协作。所提出的方法结合了遵守入学控制的外部力量和对整体滑动模式控制(ISMC)不确定性的高度鲁棒性的好处,从而使系统可以在不确定的环境中与人类伴侣合作。首先,在ISMC中应用固定时间滑动表面,以使系统的跟踪误差在固定时间内收敛,无论初始条件如何。然后,将固定的后台控制器(BSP)集成到ISMC中,作为标称控制器,以实现全局固定时间收敛。此外,为了克服奇异性问题,设计并集成到控制器中,这对于实际应用很有用。最后,提出的控制器已被验证,用于具有不确定性和外部力量的两连锁机器人操纵器。结果表明,在跟踪误差和收敛时间的意义上,所提出的控制器是优越的,同时,可以在共享工作区中遵守人类运动。
translated by 谷歌翻译
本文研究了控制多机器人系统以自组织方式实现多边形形成的问题。与典型的形成控制策略不同,在该策略中,机器人被转向以满足预定义的控制变量,例如成对距离,相对位置和轴承,本文的最重要思想是通过将控制输入随机输入到一些机器人(说说)(说说) ,组的顶点机器人),其余的遵循的简单原理是向环形图中的两个最近邻居的中点移动,而没有任何外部输入。在我们的问题中,机器人最初分布在飞机上。 Sopalled Vertex机器人负责确定整个编队的几何形状及其整体大小,而其他人则移动,以最大程度地减少两个直接邻居的差异。在第一步中,每个顶点机器人估计其相关链中机器人的数量。用于估计的两种类型的控制输入是使用最新和最后两次瞬间的测量设计设计的。在第二步中,提出了自组织的形成控制法,只有顶点机器人收到外部信息。两种估计策略之间的比较是根据收敛速度和稳健性进行的。在模拟和物理实验中,整个控制框架的有效性得到了进一步验证。
translated by 谷歌翻译
本文涉及一种特殊类型的Lyapunov功能,即Zubov方程的解决方案。这种功能可用于表征常微分方程的系统的吸引领域。我们派生并证明了Zubov等式的一体形式解决方案。对于数值计算,我们开发了两个数据驱动方法。一个基于差分方程的增强系统的集成;另一个是基于深度学习。前者对于具有相对低的状态空间尺寸的系统是有效的,并且后者是为高维问题开发的。深度学习方法应用于新英格兰10发电机电力系统模型。我们证明了电力系统的Lyapunov功能存在神经网络近似,使得近似误差是发电机数量的立方多项式。证明了作为n的函数的误差收敛速率,是神经元数量的函数。
translated by 谷歌翻译
在本文中,提出了针对动力学不确定性的机器人操纵器提出的人工延迟阻抗控制器。控制定律将超级扭曲算法(STA)类型的二阶切换控制器通过新颖的广义过滤跟踪误差(GFTE)统一延迟估计(TDE)框架。虽然时间延迟的估计框架可以通过估算不确定的机器人动力学和相互作用力来从状态和控制工作的近期数据中估算不确定的机器人动力学和相互作用力来准确建模机器人动力学,但外部循环中的第二阶切换控制法可以在时间延迟估计的情况下提供稳健性(TDE)由于操纵器动力学的近似而引起的误差。因此,拟议的控制定律试图在机器人最终效应变量之间建立所需的阻抗模型,即在存在不确定性的情况下,在遇到平滑接触力和自由运动期间的力和运动。使用拟议的控制器以及收敛分析的两个链接操纵器的仿真结果显示出验证命题。
translated by 谷歌翻译
本文提出了一种基于匹配不确定性的非线性系统的收缩指标和干扰估计的轨迹中心学习控制方法。该方法允许使用广泛的模型学习工具,包括深神经网络,以学习不确定的动态,同时仍然在整个学习阶段提供瞬态跟踪性能的保证,包括没有学习的特殊情况。在所提出的方法中,提出了一种扰动估计法,以估计不确定性的点值,具有预计估计误差限制(EEB)。学习的动态,估计的紊乱和EEB在强大的黎曼能量条件下并入,以计算控制法,即使学习模型较差,也能保证在整个学习阶段的所需轨迹对所需轨迹的指数趋同。另一方面,具有改进的精度,学习的模型可以在高级计划器中结合,以规划更好的性能,例如降低能耗和更短的旅行时间。建议的框架在平面Quadrotor导航示例上验证。
translated by 谷歌翻译
用于未知非线性系统的学习和合成稳定控制器是现实世界和工业应用的具有挑战性问题。 Koopman操作员理论允许通过直线系统和非线性控制系统的镜头通过线性系统和非线性控制系统的镜头来分析非线性系统。这些方法的关键思想,在于将非线性系统的坐标转换为Koopman可观察,这是允许原始系统(控制系统)作为更高尺寸线性(双线性控制)系统的坐标。然而,对于非线性控制系统,通过应用基于Koopman操作员的学习方法获得的双线性控制模型不一定是稳定的,因此,不保证稳定反馈控制的存在,这对于许多真实世界的应用来说是至关重要的。同时识别基于这些可稳定的Koopman的双线性控制系统以及相关的Koopman可观察到仍然是一个开放的问题。在本文中,我们提出了一个框架,以通过同时学习为基于Koopman的底层未知的非线性控制系统以及基于Koopman的控制Lyapunov函数(CLF)来识别和构造这些可稳定的双线性模型及其相关的可观察能力。双线性模型使用学习者和伪空。我们提出的方法从而为非线性控制系统具有未知动态的非线性控制系统提供了可证明的全球渐近稳定性的保证。提供了数值模拟,以验证我们提出的稳定反馈控制器为未知的非线性系统的效力。
translated by 谷歌翻译
我们提出协调指导矢量字段,以与机器人团队同时完成两个任务:首先,多个机器人的指导和导航到可能嵌入2D或3D中的可能不同的路径或表面;其次,他们的运动协调在跟踪他们的规定路径或表面时。运动配位是由路径或表面上的机器人之间所需的参数位移定义的。通过控制对应于指导矢量场之间的路径或表面参数的虚拟坐标来实现这种所需的位移。由动力学系统理论和Lyapunov理论支撑的严格数学保证,用于从所有初始位置上有效的分布式运动协调和机器人在路径或表面上导航。作为实用机器人应用的一个例子,我们从所提出的具有驱动饱和度的Dubins-car样模型的指导向量场中得出了一种对照算法。我们提出的算法分布并可扩展到任意数量的机器人。此外,广泛的说明性模拟和固定翼飞机户外实验验证了我们算法的有效性和鲁棒性。
translated by 谷歌翻译
强化学习通常与奖励最大化(或成本量化)代理的培训相关,换句话说是控制者。它可以使用先验或在线收集的系统数据以无模型或基于模型的方式应用,以培训涉及的参数体系结构。通常,除非通过学习限制或量身定制的培训规则采取特殊措施,否则在线增强学习不能保证闭环稳定性。特别有希望的是通过“经典”控制方法进行增强学习的混合体。在这项工作中,我们建议一种在纯粹的在线学习环境中,即没有离线培训的情况下,可以保证系统控制器闭环的实际稳定性。此外,我们仅假设对系统模型的部分知识。为了达到要求的结果,我们采用经典自适应控制技术。总体控制方案的实施是在数字,采样设置中明确提供的。也就是说,控制器接收系统的状态,并在离散的时间(尤其是等距的时刻)中计算控制动作。该方法在自适应牵引力控制和巡航控制中进行了测试,事实证明,该方法可显着降低成本。
translated by 谷歌翻译
在本文中,我们为采样通信场景中的一类多机器人系统提出了一种反向运动控制器。目标是使一组机器人执行轨迹跟踪{以协调的方式}当通信的采样时间是不可忽略的,破坏标准控制设计的理论收敛保证。鉴于配置空间中可行的期望轨迹,所提出的控制器从采样时间瞬间从系统接收测量,并计算由低级控制器跟踪的机器人的速度引用。我们提出了一个共同设计的反馈加上馈电控制器,具有可提供的稳定性和误差会聚保证,并进一步表明所获得的控制器是可分散的实现的可供选择。我们使用现实模拟器(飞行起重机)的电缆悬挂负荷的协同空中操纵方案中的数值模拟来测试所提出的控制策略。最后,我们将建议的分散控制器与集中式方法进行比较,可通过智能启发式调整反馈增益,并表明它实现了可比性。
translated by 谷歌翻译