The ability to jointly learn from multiple modalities, such as text, audio, and visual data, is a defining feature of intelligent systems. While there have been promising advances in designing neural networks to harness multimodal data, the enormous success of data augmentation currently remains limited to single-modality tasks like image classification. Indeed, it is particularly difficult to augment each modality while preserving the overall semantic structure of the data; for example, a caption may no longer be a good description of an image after standard augmentations have been applied, such as translation. Moreover, it is challenging to specify reasonable transformations that are not tailored to a particular modality. In this paper, we introduce LeMDA, Learning Multimodal Data Augmentation, an easy-to-use method that automatically learns to jointly augment multimodal data in feature space, with no constraints on the identities of the modalities or the relationship between modalities. We show that LeMDA can (1) profoundly improve the performance of multimodal deep learning architectures, (2) apply to combinations of modalities that have not been previously considered, and (3) achieve state-of-the-art results on a wide range of applications comprised of image, text, and tabular data.
translated by 谷歌翻译
数据增强是通过转换为机器学习的人工创建数据的人工创建,是一个跨机器学习学科的研究领域。尽管它对于增加模型的概括功能很有用,但它还可以解决许多其他挑战和问题,从克服有限的培训数据到正规化目标到限制用于保护隐私的数据的数量。基于对数据扩展的目标和应用的精确描述以及现有作品的分类法,该调查涉及用于文本分类的数据增强方法,并旨在为研究人员和从业者提供简洁而全面的概述。我们将100多种方法划分为12种不同的分组,并提供最先进的参考文献来阐述哪种方法可以通过将它们相互关联,从而阐述了哪种方法。最后,提供可能构成未来工作的基础的研究观点。
translated by 谷歌翻译
数据增强是提高深度学习数据效率的必要条件。对于视觉预训练,仅在以前的作品中为图像或文本增强数据。在本文中,我们介绍了Mixgen:视觉表示的联合数据增强学习,以进一步提高数据效率。它生成了新的图像文本对,并通过插值图像和串联文本保留了语义关系。它很简单,可以插入现有管道中。我们在五个下游视觉语言任务中评估了四个架构,包括夹子,vilt,albef和tcl在内的混合带,以显示其多功能性和有效性。例如,在ALBEF预训练中添加Mixgen会导致下游任务的绝对性能改进:图像文本检索(可可微型调整为+6.2%,Flicker30k零射击),视觉接地(+0.9%)(+0.9%) refcoco+),视觉推理(nlvr $^{2} $的+0.9%),视觉询问答案(vqa2.0上的+0.3%)和视觉效果(snli-ve上的+0.4%)。
translated by 谷歌翻译
多模式分类是人类以人为本的机器学习中的核心任务。我们观察到信息跨多模式融合在多模式融合之前,信息在偶像中具有高度互补的信息,因此在多模式融合之前可以彻底稀释。为此,我们呈现稀疏的融合变压器(SFT),一种用于现有最先进的方法的变压器的新型多模式融合方法,同时具有大大降低了内存占用和计算成本。我们想法的关键是稀疏池块,可在跨模式建模之前减少单峰令牌集合。评估在多个多模式基准数据集上进行,用于广泛的分类任务。在类似的实验条件下的多个基准上获得最先进的性能,同时报告计算成本和内存要求降低六倍。广泛的消融研究展示了在天真的方法中结合稀疏和多式化学习的好处。这铺平了在低资源设备上实现多模级学习的方式。
translated by 谷歌翻译
随着变压器的发展,近年来预先训练的模型已经以突破性的步伐发展。他们在自然语言处理(NLP)和计算机视觉(CV)中主导了主流技术。如何将预训练适应视觉和语言(V-L)学习和改善下游任务绩效成为多模式学习的重点。在本文中,我们回顾了视力语言预训练模型(VL-PTMS)的最新进展。作为核心内容,我们首先简要介绍了几种方法,将原始图像和文本编码为单模式嵌入在预训练之前。然后,我们在建模文本和图像表示之间的相互作用时深入研究VL-PTM的主流体系结构。我们进一步提出了广泛使用的预训练任务,然后我们介绍了一些常见的下游任务。我们终于结束了本文,并提出了一些有前途的研究方向。我们的调查旨在为研究人员提供合成和指向相关研究的指针。
translated by 谷歌翻译
随着图像文本对的大量数据以及视觉和语言(V&L)任务的多样性,学者在该研究领域引入了大量的深度学习模型。此外,近年来,转移学习还显示出在计算机愿景中的巨大成功,例如图像分类,对象检测等以及在自然语言处理中以进行问答,机器翻译等的自然语言处理。继承转移学习的精神, V&L的研究工作已经在大规模数据集上设计了多种预训练技术,以增强下游任务的性能。本文的目的是提供当代V&L预审前模型的全面修订。特别是,我们对预处理的方法进行了分类和描述,以及最先进的视觉和语言预训练模型的摘要。此外,还提供了培训数据集和下游任务的列表,以进一步提高V&L预处理的观点。最后,我们决定采取进一步的一步,讨论众多未来研究的方向。
translated by 谷歌翻译
最近,自我监督的表示学习(SSRL)在计算机视觉,语音,自然语言处理(NLP)以及最近的其他类型的模式(包括传感器的时间序列)中引起了很多关注。自我监督学习的普及是由传统模型通常需要大量通知数据进行培训的事实所驱动的。获取带注释的数据可能是一个困难且昂贵的过程。已经引入了自我监督的方法,以通过使用从原始数据自由获得的监督信号对模型进行判别预训练来提高训练数据的效率。与现有的对SSRL的评论不同,该评论旨在以单一模式为重点介绍CV或NLP领域的方法,我们旨在为时间数据提供对多模式自我监督学习方法的首次全面审查。为此,我们1)提供现有SSRL方法的全面分类,2)通过定义SSRL框架的关键组件来引入通用管道,3)根据其目标功能,网络架构和潜在应用程序,潜在的应用程序,潜在的应用程序,比较现有模型, 4)查看每个类别和各种方式中的现有多模式技术。最后,我们提出了现有的弱点和未来的机会。我们认为,我们的工作对使用多模式和/或时间数据的域中SSRL的要求有了一个观点
translated by 谷歌翻译
We present an effective method for fusing visual-and-language representations for several question answering tasks including visual question answering and visual entailment. In contrast to prior works that concatenate unimodal representations or use only cross-attention, we compose multimodal representations via channel fusion. By fusing on the channels, the model is able to more effectively align the tokens compared to standard methods. These multimodal representations, which we call compound tokens are generated with cross-attention transformer layers. First, vision tokens are used as queries to retrieve compatible text tokens through cross-attention. We then chain the vision tokens and the queried text tokens along the channel dimension. We call the resulting representations compound tokens. A second group of compound tokens are generated using an analogous process where the text tokens serve as queries to the cross-attention layer. We concatenate all the compound tokens for further processing with multimodal encoder. We demonstrate the effectiveness of compound tokens using an encoder-decoder vision-language model trained end-to-end in the open-vocabulary setting. Compound Tokens achieve highly competitive performance across a range of question answering tasks including GQA, VQA2.0, and SNLI-VE.
translated by 谷歌翻译
事实证明,大规模的视觉和语言(V+L)预训练已被证明有效地增强了下游V+L任务。但是,当涉及时尚域时,现有的V+L方法是不足的,因为它们忽略了时尚V+L数据和下游任务的独特特征。在这项工作中,我们提出了一个以时尚为中心的新型V+L表示框架,被称为Fashionvil。它包含两个新型时尚特定的预训练任务,旨在使用时尚V+L数据利用两个内在属性。首先,与其他域仅包含单个图像文本对的其他域相比,时尚域中可能有多个图像。因此,我们提出了一项多视图对比学习任务,以将一个图像的可视化表示为另一个图像+文本的组成多模式表示。其次,时尚文本(例如,产品描述)通常包含丰富的细粒概念(属性/名词短语)。为了利用这一点,引入了伪归因于分类任务,以鼓励同一概念的学习的单峰(视觉/文本)表示。此外,时尚V+L任务唯一包含不符合常见的一流或两流体系结构的任务(例如,文本引导的图像检索)。因此,我们提出了一个灵活的,多功能的V+L模型体系结构,该体系结构由模态 - 静态变压器组成,以便可以灵活地适应任何下游任务。广泛的实验表明,我们的FashionVil在五个下游任务中实现了新的最新技术。代码可从https://github.com/brandonhanx/mmf获得。
translated by 谷歌翻译
Humans perceive the world by concurrently processing and fusing high-dimensional inputs from multiple modalities such as vision and audio. Machine perception models, in stark contrast, are typically modality-specific and optimised for unimodal benchmarks, and hence late-stage fusion of final representations or predictions from each modality (`late-fusion') is still a dominant paradigm for multimodal video classification. Instead, we introduce a novel transformer based architecture that uses `fusion bottlenecks' for modality fusion at multiple layers. Compared to traditional pairwise self-attention, our model forces information between different modalities to pass through a small number of bottleneck latents, requiring the model to collate and condense the most relevant information in each modality and only share what is necessary. We find that such a strategy improves fusion performance, at the same time reducing computational cost. We conduct thorough ablation studies, and achieve state-of-the-art results on multiple audio-visual classification benchmarks including Audioset, Epic-Kitchens and VGGSound. All code and models will be released.
translated by 谷歌翻译
Astounding results from Transformer models on natural language tasks have intrigued the vision community to study their application to computer vision problems. Among their salient benefits, Transformers enable modeling long dependencies between input sequence elements and support parallel processing of sequence as compared to recurrent networks e.g., Long short-term memory (LSTM). Different from convolutional networks, Transformers require minimal inductive biases for their design and are naturally suited as set-functions. Furthermore, the straightforward design of Transformers allows processing multiple modalities (e.g., images, videos, text and speech) using similar processing blocks and demonstrates excellent scalability to very large capacity networks and huge datasets. These strengths have led to exciting progress on a number of vision tasks using Transformer networks. This survey aims to provide a comprehensive overview of the Transformer models in the computer vision discipline. We start with an introduction to fundamental concepts behind the success of Transformers i.e., self-attention, large-scale pre-training, and bidirectional feature encoding. We then cover extensive applications of transformers in vision including popular recognition tasks (e.g., image classification, object detection, action recognition, and segmentation), generative modeling, multi-modal tasks (e.g., visual-question answering, visual reasoning, and visual grounding), video processing (e.g., activity recognition, video forecasting), low-level vision (e.g., image super-resolution, image enhancement, and colorization) and 3D analysis (e.g., point cloud classification and segmentation). We compare the respective advantages and limitations of popular techniques both in terms of architectural design and their experimental value. Finally, we provide an analysis on open research directions and possible future works. We hope this effort will ignite further interest in the community to solve current challenges towards the application of transformer models in computer vision.
translated by 谷歌翻译
本文研究了一个开放的研究问题,即生成文本图像对,以改善细粒度对文本跨模式检索任务的训练,并通过发现stylegan2模型的隐藏语义信息,为配对数据增强的新颖框架提出了一个新颖的框架。 。具体来说,我们首先在给定数据集上训练stylegan2模型。然后,我们将真实图像投影回stylegan2的潜在空间,以获取潜在的代码。为了使生成的图像可操作,我们进一步引入了一个潜在的空间对齐模块,以了解StyleGAN2潜在代码和相应的文本字幕功能之间的对齐。当我们进行在线配对数据增强时,我们首先通过随机代码替换生成增强文本,然后将增强文本传递到潜在的空间对齐模块中以输出潜在代码,最终将其馈送到stylegan2以生成增强图像。我们评估了增强数据方法对两个公共跨模式检索数据集的功效,其中有希望的实验结果表明,可以将增强的文本图像对数据与原始数据一起训练,以增强图像到文本交叉 - 模态检索性能。
translated by 谷歌翻译
Many real-world problems are inherently multimodal, from the communicative modalities humans use to express social and emotional states to the force, proprioception, and visual sensors ubiquitous on robots. While there has been an explosion of interest in multimodal representation learning, these methods are still largely focused on a small set of modalities, primarily in the language, vision, and audio space. In order to accelerate generalization towards diverse and understudied modalities, this paper studies efficient representation learning for high-modality scenarios. Since adding new models for every new modality or task becomes prohibitively expensive, a critical technical challenge is heterogeneity quantification: how can we measure which modalities encode similar information and interactions in order to permit parameter sharing with previous modalities? We propose two new information-theoretic metrics for heterogeneity quantification: (1) modality heterogeneity studies how similar 2 modalities $\{X_1,X_2\}$ are by measuring how much information can be transferred from $X_1$ to $X_2$, while (2) interaction heterogeneity studies how similarly pairs of modalities $\{X_1,X_2\}, \{X_3,X_4\}$ interact by measuring how much interaction information can be transferred from $\{X_1,X_2\}$ to $\{X_3,X_4\}$. We show the importance of these proposed metrics in high-modality scenarios as a way to automatically prioritize the fusion of modalities that contain unique information or interactions. The result is a single model, HighMMT, that scales up to $10$ modalities and $15$ tasks from $5$ different research areas. Not only does HighMMT outperform prior methods on the tradeoff between performance and efficiency, it also demonstrates a crucial scaling behavior: performance continues to improve with each modality added, and transfers to entirely new modalities and tasks during fine-tuning.
translated by 谷歌翻译
变压器架构已经带来了计算语言领域的根本变化,这已经由经常性神经网络主导多年。它的成功还意味着具有语言和愿景的跨模型任务的大幅度变化,许多研究人员已经解决了这个问题。在本文中,我们审查了该领域中的一些最关键的里程碑,以及变压器架构如何纳入Visuol语言跨模型任务的整体趋势。此外,我们讨论了当前的局限性,并推测了我们发现迫在眉睫的一些前景。
translated by 谷歌翻译
图像文本聚类(ITC)的目标是通过整合这些异质样品的多模式的互补和一致信息来找到正确的簇。但是,目前的大多数研究都根据理想的前提分析了ITC,即每种模式中的样本都是完整的。但是,在现实情况下,这种推定并不总是有效的。缺少的数据问题使图像文本特征学习性能退化,并最终会影响ITC任务中的概括能力。尽管已经提出了一系列方法来解决此不完整的图像文本群集问题(IITC),但仍然存在以下问题:1)大多数现有方法几乎不考虑异质特征域之间的明显差距。 2)对于缺少数据,很少保证由现有方法生成的表示形式适合聚类任务。 3)现有方法不利用内部和内部模式的潜在连接。在本文中,我们提出了一个聚类引起的生成不完整的图像文本聚类(CIGIT-C)网络,以应对上述挑战。更具体地说,我们首先使用特定于模态的编码器将原始功能映射到更独特的子空间。通过使用对抗生成网络在另一种模态上产生一种方式,可以彻底探索内部内部和模式之间的潜在连接。最后,我们使用两个KL DiverGence损失更新相应的模态特异性编码器。公共图像文本数据集的实验结果表明,建议的方法优于IITC作业更有效。
translated by 谷歌翻译
We present Masked Audio-Video Learners (MAViL) to train audio-visual representations. Our approach learns with three complementary forms of self-supervision: (1) reconstruction of masked audio and video input data, (2) intra- and inter-modal contrastive learning with masking, and (3) self-training by reconstructing joint audio-video contextualized features learned from the first two objectives. Pre-training with MAViL not only enables the model to perform well in audio-visual classification and retrieval tasks but also improves representations of each modality in isolation, without using information from the other modality for fine-tuning or inference. Empirically, MAViL sets a new state-of-the-art on AudioSet (53.1 mAP) and VGGSound (67.1% accuracy). For the first time, a self-supervised audio-visual model outperforms ones that use external supervision on these benchmarks. Code will be available soon.
translated by 谷歌翻译
由于低资源域名,新任务以及需要大量培训数据的大规模神经网络的普及,最近,数据增强最近看到了对NLP的兴趣增加。尽管最近的高潮,但由于语言数据的离散性质所带来的挑战,这一领域仍然相对望远欠了。在本文中,我们通过以结构化方式概述文献来展示对NLP的全面和统一对NLP的数据。我们首先介绍和激励NLP的数据增强,然后讨论主要的方法论代表性方法。接下来,我们突出显示用于流行NLP应用程序和任务的技术。我们通过概述当前挑战和未来研究的指示来结束。总体而言,我们的论文旨在澄清现有文学的景观,以便NLP的数据增强,并激励该领域的其他工作。我们还提供了一个GitHub存储库,纸张列表将在https://github.com/styfeng/dataaug4nlp上不断更新
translated by 谷歌翻译
利用深度学习的最新进展,文本到图像生成模型目前具有吸引公众关注的优点。其中两个模型Dall-E 2和Imagen已经证明,可以从图像的简单文本描述中生成高度逼真的图像。基于一种称为扩散模型的新型图像生成方法,文本对图像模型可以生产许多不同类型的高分辨率图像,其中人类想象力是唯一的极限。但是,这些模型需要大量的计算资源来训练,并处理从互联网收集的大量数据集。此外,代码库和模型均未发布。因此,它可以防止AI社区尝试这些尖端模型,从而使其结果复制变得复杂,即使不是不可能。在本文中,我们的目标是首先回顾这些模型使用的不同方法和技术,然后提出我们自己的文本模型模型实施。高度基于DALL-E 2,我们引入了一些轻微的修改,以应对所引起的高计算成本。因此,我们有机会进行实验,以了解这些模型的能力,尤其是在低资源制度中。特别是,我们提供了比Dall-e 2的作者(包括消融研究)更深入的分析。此外,扩散模型使用所谓的指导方法来帮助生成过程。我们引入了一种新的指导方法,该方法可以与其他指导方法一起使用,以提高图像质量。最后,我们的模型产生的图像质量相当好,而不必维持最先进的文本对图像模型的重大培训成本。
translated by 谷歌翻译
现有视觉语言预训练(VLP)方法主要依赖于配对的图像文本数据集,这些数据集由大量人类劳动注释,或者从互联网上爬行,然后是精心制作的数据清洁技术。为了减少对良好的图像文本对的依赖,有望直接利用仅大规模的仅文本和仅图像的语料库。本文提出了一种数据增强方法,即跨模式cutmix(CMC),用于在未配对的VLP中进行隐式跨模式对齐学习。具体而言,CMC将自然句子从文本视图转换为多模式视图,在该视图中,句子中的视觉词语单词被带有相似语义的各种图像贴片随机替换。拟议中的CMC有几个吸引人的礼节。首先,它增强了数据多样性,同时保持语义含义完好无损地解决了对齐数据稀缺的问题;其次,通过将跨模式噪声连接到单模式数据上,它指导模型以学习跨模态的令牌级相互作用,以更好地降级。此外,我们提出了一种名为VLMIXER的新的未配对VLP方法,该方法将CMC与对比度学习集成在一起,以将Uni-Mododal和多模式视图汇总在一起,以在不同模式之间进行更好的实例级别对齐。在五个下游任务上进行的广泛实验表明,VLMIXER可以超过以前最先进的未配对VLP方法。
translated by 谷歌翻译
Our experience of the world is multimodal -we see objects, hear sounds, feel texture, smell odors, and taste flavors. Modality refers to the way in which something happens or is experienced and a research problem is characterized as multimodal when it includes multiple such modalities. In order for Artificial Intelligence to make progress in understanding the world around us, it needs to be able to interpret such multimodal signals together. Multimodal machine learning aims to build models that can process and relate information from multiple modalities. It is a vibrant multi-disciplinary field of increasing importance and with extraordinary potential. Instead of focusing on specific multimodal applications, this paper surveys the recent advances in multimodal machine learning itself and presents them in a common taxonomy. We go beyond the typical early and late fusion categorization and identify broader challenges that are faced by multimodal machine learning, namely: representation, translation, alignment, fusion, and co-learning. This new taxonomy will enable researchers to better understand the state of the field and identify directions for future research.
translated by 谷歌翻译