We consider task allocation for multi-object transport using a multi-robot system, in which each robot selects one object among multiple objects with different and unknown weights. The existing centralized methods assume the number of robots and tasks to be fixed, which is inapplicable to scenarios that differ from the learning environment. Meanwhile, the existing distributed methods limit the minimum number of robots and tasks to a constant value, making them applicable to various numbers of robots and tasks. However, they cannot transport an object whose weight exceeds the load capacity of robots observing the object. To make it applicable to various numbers of robots and objects with different and unknown weights, we propose a framework using multi-agent reinforcement learning for task allocation. First, we introduce a structured policy model consisting of 1) predesigned dynamic task priorities with global communication and 2) a neural network-based distributed policy model that determines the timing for coordination. The distributed policy builds consensus on the high-priority object under local observations and selects cooperative or independent actions. Then, the policy is optimized by multi-agent reinforcement learning through trial and error. This structured policy of local learning and global communication makes our framework applicable to various numbers of robots and objects with different and unknown weights, as demonstrated by numerical simulations.
translated by 谷歌翻译
In this paper, we present a solution to a design problem of control strategies for multi-agent cooperative transport. Although existing learning-based methods assume that the number of agents is the same as that in the training environment, the number might differ in reality considering that the robots' batteries may completely discharge, or additional robots may be introduced to reduce the time required to complete a task. Therefore, it is crucial that the learned strategy be applicable to scenarios wherein the number of agents differs from that in the training environment. In this paper, we propose a novel multi-agent reinforcement learning framework of event-triggered communication and consensus-based control for distributed cooperative transport. The proposed policy model estimates the resultant force and torque in a consensus manner using the estimates of the resultant force and torque with the neighborhood agents. Moreover, it computes the control and communication inputs to determine when to communicate with the neighboring agents under local observations and estimates of the resultant force and torque. Therefore, the proposed framework can balance the control performance and communication savings in scenarios wherein the number of agents differs from that in the training environment. We confirm the effectiveness of our approach by using a maximum of eight and six robots in the simulations and experiments, respectively.
translated by 谷歌翻译
最先进的多机构增强学习(MARL)方法为各种复杂问题提供了有希望的解决方案。然而,这些方法都假定代理执行同步的原始操作执行,因此它们不能真正可扩展到长期胜利的真实世界多代理/机器人任务,这些任务固有地要求代理/机器人以异步的理由,涉及有关高级动作选择的理由。不同的时间。宏观行动分散的部分可观察到的马尔可夫决策过程(MACDEC-POMDP)是在完全合作的多代理任务中不确定的异步决策的一般形式化。在本论文中,我们首先提出了MacDec-Pomdps的一组基于价值的RL方法,其中允许代理在三个范式中使用宏观成果功能执行异步学习和决策:分散学习和控制,集中学习,集中学习和控制,以及分散执行的集中培训(CTDE)。在上述工作的基础上,我们在三个训练范式下制定了一组基于宏观行动的策略梯度算法,在该训练范式下,允许代理以异步方式直接优化其参数化策略。我们在模拟和真实的机器人中评估了我们的方法。经验结果证明了我们在大型多代理问题中的方法的优势,并验证了我们算法在学习具有宏观actions的高质量和异步溶液方面的有效性。
translated by 谷歌翻译
我们为仓库环境中的移动机器人提供基于新颖的强化学习(RL)任务分配和分散的导航算法。我们的方法是针对各种机器人执行各种接送和交付任务的场景而设计的。我们考虑了联合分散任务分配和导航的问题,并提出了解决该问题的两层方法。在更高级别,我们通过根据马尔可夫决策过程制定任务并选择适当的奖励来最大程度地减少总旅行延迟(TTD)来解决任务分配。在较低级别,我们使用基于ORCA的分散导航方案,使每个机器人能够独立执行这些任务,并避免与其他机器人和动态障碍物发生碰撞。我们通过定义较高级别的奖励作为低级导航算法的反馈来结合这些下层和上层。我们在复杂的仓库布局中进行了广泛的评估,并具有大量代理商,并根据近视拾取距离距离最小化和基于遗憾的任务选择,突出了对最先进算法的好处。我们观察到任务完成时间的改善高达14%,并且在计算机器人的无碰撞轨迹方面提高了40%。
translated by 谷歌翻译
在现实设置中跨多个代理的决策同步是有问题的,因为它要求代理等待其他代理人终止和交流有关终止的终止。理想情况下,代理应该学习和执行异步。这样的异步方法还允许暂时扩展的动作,这些操作可能会根据执行的情况和操作花费不同的时间。不幸的是,当前的策略梯度方法不适用于异步设置,因为他们认为代理在每个时间步骤中都同步推理了动作选择。为了允许异步学习和决策,我们制定了一组异步的多代理参与者 - 批判性方法,这些方法使代理可以在三个标准培训范式中直接优化异步策略:分散的学习,集中学习,集中学习和集中培训以进行分解执行。各种现实域中的经验结果(在模拟和硬件中)证明了我们在大型多代理问题中的优势,并验证了我们算法在学习高质量和异步解决方案方面的有效性。
translated by 谷歌翻译
我们研究了流行的集中训练和分散执行(CTDE)范式中的多机器人发臭导航问题。当每个机器人考虑其路径而不明确地与其他机器人明确分享观察时,这一问题挑战了,可能导致深度加强学习(DRL)中的非静止问题。典型的CTDE算法将联合动作值函数分解为个别函数,以支持合作并实现分散的执行。这种分解涉及限制(例如,单调性),其限制在个体中的新行为的出现,因为从联合动作值开始训练。相比之下,我们为CTDE提出了一种新颖的架构,该架构使用集中式状态值网络来计算联合状态值,该值用于在代理的基于值的更新中注入全局状态信息。因此,考虑到环境的整体状态,每个模型计算其权重的梯度更新。我们的想法遵循Dueling Networks作为联合状态值的单独估计的独立估计,具有提高采样效率的优点,同时提供每个机器人信息,无论全局状态是否为(或不是)有价值的。具有2 4和8个机器人的机器人导航任务的实验,确认了我们对先前CTDE方法的方法的卓越性能(例如,VDN,QMIX)。
translated by 谷歌翻译
许多现实世界的应用程序都可以作为多机构合作问题进行配置,例如网络数据包路由和自动驾驶汽车的协调。深入增强学习(DRL)的出现为通过代理和环境的相互作用提供了一种有前途的多代理合作方法。但是,在政策搜索过程中,传统的DRL解决方案遭受了多个代理具有连续动作空间的高维度。此外,代理商政策的动态性使训练非平稳。为了解决这些问题,我们建议采用高级决策和低水平的个人控制,以进行有效的政策搜索,提出一种分层增强学习方法。特别是,可以在高级离散的动作空间中有效地学习多个代理的合作。同时,低水平的个人控制可以减少为单格强化学习。除了分层增强学习外,我们还建议对手建模网络在学习过程中对其他代理的政策进行建模。与端到端的DRL方法相反,我们的方法通过以层次结构将整体任务分解为子任务来降低学习的复杂性。为了评估我们的方法的效率,我们在合作车道变更方案中进行了现实世界中的案例研究。模拟和现实世界实验都表明我们的方法在碰撞速度和收敛速度中的优越性。
translated by 谷歌翻译
培训期间的对抗性攻击能够强烈影响多功能增强学习算法的性能。因此,非常希望增加现有算法,使得消除对抗对协作网络的对抗性攻击的影响,或者至少有界限。在这项工作中,我们考虑一个完全分散的网络,每个代理商收到本地奖励并观察全球州和行动。我们提出了一种基于弹性共识的演员 - 批评算法,其中每个代理估计了团队平均奖励和价值函数,并将关联的参数向量传送到其立即邻居。我们表明,在拜占庭代理人的存在下,其估算和通信策略是完全任意的,合作社的估计值会融合到有概率一体的有界共识值,条件是在附近的最多有$ H $拜占庭代理商每个合作社和网络都是$(2h + 1)$ - 强大。此外,我们证明,合作社的政策在其团队平均目标函数的局部最大化器周围汇聚在其团队平均目标函数的概率上,这是对渐关节转移变得稳定的普发因子的政策。
translated by 谷歌翻译
Multi-robot manipulation tasks involve various control entities that can be separated into dynamically independent parts. A typical example of such real-world tasks is dual-arm manipulation. Learning to naively solve such tasks with reinforcement learning is often unfeasible due to the sample complexity and exploration requirements growing with the dimensionality of the action and state spaces. Instead, we would like to handle such environments as multi-agent systems and have several agents control parts of the whole. However, decentralizing the generation of actions requires coordination across agents through a channel limited to information central to the task. This paper proposes an approach to coordinating multi-robot manipulation through learned latent action spaces that are shared across different agents. We validate our method in simulated multi-robot manipulation tasks and demonstrate improvement over previous baselines in terms of sample efficiency and learning performance.
translated by 谷歌翻译
我们提出了一种基于新颖的增强学习算法,用于仓库环境中的多机器人任务分配问题。我们将其作为马尔可夫的决策过程提出,并通过一种新颖的深度多代理强化学习方法(称为RTAW)解决了启发性的政策体系结构。因此,我们提出的策略网络使用独立于机器人/任务数量的全局嵌入。我们利用近端政策优化算法进行培训,并使用精心设计的奖励来获得融合的政策。融合的政策确保了不同机器人之间的合作,以最大程度地减少总旅行延迟(TTD),这最终改善了Makepan的大型任务列表。在我们的广泛实验中,我们将RTAW算法的性能与最先进的方法进行了比较,例如近视皮卡最小化(Greedy)和基于遗憾的基于不同导航方案的基线。在TTD中,我们在TTD中显示了最高14%(25-1000秒)的情况,这些方案具有数百或数千个任务,用于不同挑战性的仓库布局和任务生成方案。我们还通过在模拟中显示高达$ 1000 $的机器人的性能来证明我们的方法的可扩展性。
translated by 谷歌翻译
多机器人自适应抽样问题旨在为机器人团队找到轨迹,以有效地对机器人的给定耐力预算中的感兴趣现象进行采样。在本文中,我们使用分散的多代理增强学习来提出一种可靠,可扩展的方法,用于准静态环境过程的合作自适应采样(MARLAS)。鉴于该领域的先验采样,该提议的方法学习了一个机器人团队的分散政策,以在固定预算范围内采样高实现区域。多机器人自适应采样问题要求机器人彼此协调,以避免重叠的采样轨迹。因此,我们编码机器人之间的邻居位置和间歇性通信在学习过程中的估计值。我们评估了Marlas对多个性能指标的评估,发现它的表现优于其他基线多机器人采样技术。我们进一步证明了与机器人团队的大小和所采样区域的大小相对于通信失败和可伸缩性的鲁棒性。实验评估既是对真实数据的模拟,又在演示环境设置的实际机器人实验中进行的。
translated by 谷歌翻译
在过去的几十年中,多机构增强学习(MARL)一直在学术界和行业受到广泛关注。 MAL中的基本问题之一是如何全面评估不同的方法。在视频游戏或简单的模拟场景中评估了大多数现有的MAL方法。这些方法在实际情况下,尤其是多机器人系统中的性能仍然未知。本文介绍了一个可扩展的仿真平台,用于多机器人增强学习(MRRL),称为SMART,以满足这一需求。确切地说,智能由两个组成部分组成:1)一个模拟环境,该环境为培训提供了各种复杂的交互场景,以及2)现实世界中的多机器人系统,用于现实的性能评估。此外,SMART提供了代理环境API,这些API是算法实现的插件。为了说明我们平台的实用性,我们就合作驾驶车道变更方案进行了案例研究。在案例研究的基础上,我们总结了MRRL的一些独特挑战,这些挑战很少被考虑。最后,我们为鼓励和增强MRRL研究的仿真环境,相关的基准任务和最先进的基线开放。
translated by 谷歌翻译
This work considers the problem of learning cooperative policies in complex, partially observable domains without explicit communication. We extend three classes of single-agent deep reinforcement learning algorithms based on policy gradient, temporal-difference error, and actor-critic methods to cooperative multi-agent systems. We introduce a set of cooperative control tasks that includes tasks with discrete and continuous actions, as well as tasks that involve hundreds of agents. The three approaches are evaluated against each other using different neural architectures, training procedures, and reward structures. Using deep reinforcement learning with a curriculum learning scheme, our approach can solve problems that were previously considered intractable by most multi-agent reinforcement learning algorithms. We show that policy gradient methods tend to outperform both temporal-difference and actor-critic methods when using feed-forward neural architectures. We also show that recurrent policies, while more difficult to train, outperform feed-forward policies on our evaluation tasks.
translated by 谷歌翻译
多机器人系统(MRS)是一组协调的机器人,旨在相互合作并完成给定的任务。由于操作环境中的不确定性,该系统可能会遇到紧急情况,例如未观察到的障碍物,移动车辆和极端天气。蜂群等动物群体会引发集体紧急反应行为,例如绕过障碍和避免掠食者,类似于肌肉条件的反射,该反射组织局部肌肉以避免在第一反应中避免危害,而不会延迟通过大脑的危害。受此启发,我们开发了一种类似的集体反射机制,以使多机器人系统应对紧急情况。在这项研究中,基于动物集体行为分析和多代理增强学习(MARL),开发了一种由生物启发的紧急反应机制(MARL)开发的集体条件反射(CCR)。该算法使用物理模型来确定机器人是否经历了紧急情况。然后,通过相应的启发式奖励增强了涉及紧急情况的机器人的奖励,该奖励评估紧急情况和后果并决定当地机器人的参与。 CCR在三个典型的紧急情况下进行了验证:\ textit {湍流,强风和隐藏障碍物}。仿真结果表明,与基线方法相比,CCR以更快的反应速度和更安全的轨迹调整来提高机器人团队的紧急反应能力。
translated by 谷歌翻译
Cooperative multi-agent reinforcement learning (MARL) has achieved significant results, most notably by leveraging the representation-learning abilities of deep neural networks. However, large centralized approaches quickly become infeasible as the number of agents scale, and fully decentralized approaches can miss important opportunities for information sharing and coordination. Furthermore, not all agents are equal -- in some cases, individual agents may not even have the ability to send communication to other agents or explicitly model other agents. This paper considers the case where there is a single, powerful, \emph{central agent} that can observe the entire observation space, and there are multiple, low-powered \emph{local agents} that can only receive local observations and are not able to communicate with each other. The central agent's job is to learn what message needs to be sent to different local agents based on the global observations, not by centrally solving the entire problem and sending action commands, but by determining what additional information an individual agent should receive so that it can make a better decision. In this work we present our MARL algorithm \algo, describe where it would be most applicable, and implement it in the cooperative navigation and multi-agent walker domains. Empirical results show that 1) learned communication does indeed improve system performance, 2) results generalize to heterogeneous local agents, and 3) results generalize to different reward structures.
translated by 谷歌翻译
对于大规模的大规模任务,多机器人系统(MRS)可以通过利用每个机器人的不同功能,移动性和功能来有效提高效率。在本文中,我们关注大规模平面区域的多机器人覆盖路径计划(MCPP)问题,在机器人资源有限的环境中具有随机的动态干扰。我们介绍了一个工人站MR,由多名工人组成,实际上有有限的实际工作资源,一个站点提供了足够的资源来补充资源。我们旨在通过将其作为完全合作的多代理增强学习问题来解决工人站MRS的MCPP问题。然后,我们提出了一种端到端分散的在线计划方法,该方法同时解决了工人的覆盖范围计划,并为车站的集合计划。我们的方法设法减少随机动态干扰对计划的影响,而机器人可以避免与它们发生冲突。我们进行仿真和真实的机器人实验,比较结果表明,我们的方法在解决任务完成时间指标的MCPP问题方面具有竞争性能。
translated by 谷歌翻译
Communication is supposed to improve multi-agent collaboration and overall performance in cooperative Multi-agent reinforcement learning (MARL). However, such improvements are prevalently limited in practice since most existing communication schemes ignore communication overheads (e.g., communication delays). In this paper, we demonstrate that ignoring communication delays has detrimental effects on collaborations, especially in delay-sensitive tasks such as autonomous driving. To mitigate this impact, we design a delay-aware multi-agent communication model (DACOM) to adapt communication to delays. Specifically, DACOM introduces a component, TimeNet, that is responsible for adjusting the waiting time of an agent to receive messages from other agents such that the uncertainty associated with delay can be addressed. Our experiments reveal that DACOM has a non-negligible performance improvement over other mechanisms by making a better trade-off between the benefits of communication and the costs of waiting for messages.
translated by 谷歌翻译
政策梯度方法在多智能体增强学习中变得流行,但由于存在环境随机性和探索代理(即非公平性​​),它们遭受了高度的差异,这可能因信用分配难度而受到困扰。结果,需要一种方法,该方法不仅能够有效地解决上述两个问题,而且需要足够强大地解决各种任务。为此,我们提出了一种新的多代理政策梯度方法,称为强大的本地优势(ROLA)演员 - 评论家。 Rola允许每个代理人将个人动作值函数作为当地评论家,以及通过基于集中评论家的新型集中培训方法来改善环境不良。通过使用此本地批评,每个代理都计算基准,以减少对其策略梯度估计的差异,这导致含有其他代理的预期优势动作值,这些选项可以隐式提高信用分配。我们在各种基准测试中评估ROLA,并在许多最先进的多代理政策梯度算法上显示其鲁棒性和有效性。
translated by 谷歌翻译
多目标自组织追求(SOP)问题已广泛应用,并被认为是一个充满挑战的分布式系统的自组织游戏,在该系统中,智能代理在其中合作追求具有部分观察的多个动态目标。这项工作为分散的多机构系统提出了一个框架,以提高智能代理的搜索和追求能力。我们将一个自组织的系统建模为可观察到的马尔可夫游戏(POMG),具有权力下放,部分观察和非通信的特征。然后将拟议的分布式算法:模糊自组织合作协同进化(FSC2)杠杆化,以解决多目标SOP中的三个挑战:分布式自组织搜索(SOS),分布式任务分配和分布式单目标追踪。 FSC2包括一种协调的多代理深钢筋学习方法,该方法使均匀的代理能够学习天然SOS模式。此外,我们提出了一种基于模糊的分布式任务分配方法,该方法将多目标SOP分解为几个单目标追求问题。合作进化原则用于协调每个单一目标问题的分布式追随者。因此,可以缓解POMG中固有的部分观察和分布式决策的不确定性。实验结果表明,在所有三个子任务中,分布式不传动的多机构协调都具有部分观察结果,而2048 FSC2代理可以执行有效的多目标SOP,其捕获率几乎为100%。
translated by 谷歌翻译
我们开发了一个多功能辅助救援学习(MARL)方法,以了解目标跟踪的可扩展控制策略。我们的方法可以处理任意数量的追求者和目标;我们显示出现的任务,该任务包括高达1000追踪跟踪1000个目标。我们使用分散的部分可观察的马尔可夫决策过程框架来模拟追求者作为接受偏见观察(范围和轴承)的代理,了解使用固定的未知政策的目标。注意机制用于参数化代理的价值函数;这种机制允许我们处理任意数量的目标。熵 - 正规的脱助政策RL方法用于培训随机政策,我们讨论如何在追求者之间实现对冲行为,尽管有完全分散的控制执行,但仍然导致合作较弱的合作形式。我们进一步开发了一个掩蔽启发式,允许训练较少的问题,少量追求目标和在更大的问题上执行。进行彻底的仿真实验,消融研究和对现有技术算法的比较,以研究对不同数量的代理和目标性能的方法和鲁棒性的可扩展性。
translated by 谷歌翻译