在本文中,我们提出了一个新的密集检索模型,该模型通过深度查询相互作用学习了各种文档表示。我们的模型使用一组生成的伪Queries编码每个文档,以获取查询信息的多视文档表示。它不仅具有较高的推理效率,例如《香草双编码模型》,而且还可以在文档编码中启用深度查询文档的交互,并提供多方面的表示形式,以更好地匹配不同的查询。几个基准的实验证明了所提出的方法的有效性,表现出色的双重编码基准。
translated by 谷歌翻译
The dual-encoder has become the de facto architecture for dense retrieval. Typically, it computes the latent representations of the query and document independently, thus failing to fully capture the interactions between the query and document. To alleviate this, recent work expects to get query-informed representations of documents. During training, it expands the document with a real query, while replacing the real query with a generated pseudo query at inference. This discrepancy between training and inference makes the dense retrieval model pay more attention to the query information but ignore the document when computing the document representation. As a result, it even performs worse than the vanilla dense retrieval model, since its performance depends heavily on the relevance between the generated queries and the real query. In this paper, we propose a curriculum sampling strategy, which also resorts to the pseudo query at training and gradually increases the relevance of the generated query to the real query. In this way, the retrieval model can learn to extend its attention from the document only to both the document and query, hence getting high-quality query-informed document representations. Experimental results on several passage retrieval datasets show that our approach outperforms the previous dense retrieval methods1.
translated by 谷歌翻译
This paper presents a pre-training technique called query-as-context that uses query prediction to improve dense retrieval. Previous research has applied query prediction to document expansion in order to alleviate the problem of lexical mismatch in sparse retrieval. However, query prediction has not yet been studied in the context of dense retrieval. Query-as-context pre-training assumes that the predicted query is a special context for the document and uses contrastive learning or contextual masked auto-encoding learning to compress the document and query into dense vectors. The technique is evaluated on large-scale passage retrieval benchmarks and shows considerable improvements compared to existing strong baselines such as coCondenser and CoT-MAE, demonstrating its effectiveness. Our code will be available at https://github.com/caskcsg/ir/tree/main/cotmae-qc .
translated by 谷歌翻译
已经表明,在一个域上训练的双编码器经常概括到其他域以获取检索任务。一种广泛的信念是,一个双编码器的瓶颈层,其中最终得分仅仅是查询向量和通道向量之间的点产品,它过于局限,使得双编码器是用于域外概括的有效检索模型。在本文中,我们通过缩放双编码器模型的大小{\ em同时保持固定的瓶颈嵌入尺寸固定的瓶颈的大小来挑战这一信念。令人惊讶的是,令人惊讶的是,缩放模型尺寸会对各种缩放提高检索任务,特别是对于域外泛化。实验结果表明,我们的双编码器,\ textbf {g} enovalizable \ textbf {t} eTrievers(gtr),优先级%colbert〜\ cite {khattab2020colbertt}和现有的稀疏和密集的索取Beir DataSet〜\ Cite {Thakur2021Beir}显着显着。最令人惊讶的是,我们的消融研究发现,GTR是非常数据的高效,因为它只需要10 \%MARCO监督数据,以实现最佳域的性能。所有GTR模型都在https://tfhub.dev/google/collections/gtr/1发布。
translated by 谷歌翻译
Long document retrieval aims to fetch query-relevant documents from a large-scale collection, where knowledge distillation has become de facto to improve a retriever by mimicking a heterogeneous yet powerful cross-encoder. However, in contrast to passages or sentences, retrieval on long documents suffers from the scope hypothesis that a long document may cover multiple topics. This maximizes their structure heterogeneity and poses a granular-mismatch issue, leading to an inferior distillation efficacy. In this work, we propose a new learning framework, fine-grained distillation (FGD), for long-document retrievers. While preserving the conventional dense retrieval paradigm, it first produces global-consistent representations crossing different fine granularity and then applies multi-granular aligned distillation merely during training. In experiments, we evaluate our framework on two long-document retrieval benchmarks, which show state-of-the-art performance.
translated by 谷歌翻译
我们提出了一种以最小计算成本提高广泛检索模型的性能的框架。它利用由基本密度检索方法提取的预先提取的文档表示,并且涉及训练模型以共同评分每个查询的一组检索到的候选文档,同时在其他候选的上下文中暂时转换每个文档的表示。以及查询本身。当基于其与查询的相似性进行评分文档表示时,该模型因此意识到其“对等”文档的表示。我们表明,我们的方法导致基本方法的检索性能以及彼此隔离的评分候选文档进行了大量改善,如在一对培训环境中。至关重要的是,与基于伯特式编码器的术语交互重型器不同,它在运行时在任何第一阶段方法的顶部引发可忽略不计的计算开销,允许它与任何最先进的密集检索方法容易地结合。最后,同时考虑给定查询的一组候选文档,可以在检索中进行额外的有价值的功能,例如评分校准和减轻排名中的社会偏差。
translated by 谷歌翻译
当前的密集文本检索模型面临两个典型的挑战。首先,他们采用暹罗双重编码架构来独立编码查询和文档,以快速索引和搜索,同时忽略了较细粒度的术语互动。这导致了次优的召回表现。其次,他们的模型培训高度依赖于负面抽样技术,以在其对比损失中构建负面文档。为了应对这些挑战,我们提出了对抗猎犬速率(AR2),它由双重编码猎犬加上跨编码器等级组成。这两种模型是根据最小群体对手的共同优化的:检索员学会了检索负面文件以欺骗排名者,而排名者学会了对包括地面和检索的候选人进行排名,并提供渐进的直接反馈对双编码器检索器。通过这款对抗性游戏,猎犬逐渐生产出更难的负面文件来训练更好的排名者,而跨编码器排名者提供了渐进式反馈以改善检索器。我们在三个基准测试基准上评估AR2。实验结果表明,AR2始终如一地胜过现有的致密回收者方法,并在所有这些方法上实现了新的最新结果。这包括对自然问题的改进R@5%至77.9%(+2.1%),Triviaqa R@5%至78.2%(+1.4)和MS-Marco MRR@10%至39.5%(+1.3%)。代码和型号可在https://github.com/microsoft/ar2上找到。
translated by 谷歌翻译
To improve the performance of the dual-encoder retriever, one effective approach is knowledge distillation from the cross-encoder ranker. Existing works construct the candidate passages following the supervised learning setting where a query is paired with a positive passage and a batch of negatives. However, through empirical observation, we find that even the hard negatives from advanced methods are still too trivial for the teacher to distinguish, preventing the teacher from transferring abundant dark knowledge to the student through its soft label. To alleviate this issue, we propose ADAM, a knowledge distillation framework that can better transfer the dark knowledge held in the teacher with Adaptive Dark exAMples. Different from previous works that only rely on one positive and hard negatives as candidate passages, we create dark examples that all have moderate relevance to the query through mixing-up and masking in discrete space. Furthermore, as the quality of knowledge held in different training instances varies as measured by the teacher's confidence score, we propose a self-paced distillation strategy that adaptively concentrates on a subset of high-quality instances to conduct our dark-example-based knowledge distillation to help the student learn better. We conduct experiments on two widely-used benchmarks and verify the effectiveness of our method.
translated by 谷歌翻译
信息检索是自然语言处理中的重要组成部分,用于知识密集型任务,如问题应答和事实检查。最近,信息检索已经看到基于神经网络的密集检索器的出现,作为基于术语频率的典型稀疏方法的替代方案。这些模型在数据集和任务中获得了最先进的结果,其中提供了大型训练集。但是,它们不会很好地转移到没有培训数据的新域或应用程序,并且通常因未经监督的术语 - 频率方法(例如BM25)的术语频率方法而言。因此,自然问题是如果没有监督,是否有可能训练密集的索取。在这项工作中,我们探讨了对比学习的限制,作为培训无人监督的密集检索的一种方式,并表明它导致强烈的检索性能。更确切地说,我们在15个数据集中出现了我们的模型胜过BM25的Beir基准测试。此外,当有几千例的示例可用时,我们显示微调我们的模型,与BM25相比,这些模型导致强大的改进。最后,当在MS-Marco数据集上微调之前用作预训练时,我们的技术在Beir基准上获得最先进的结果。
translated by 谷歌翻译
基于语义空间中密集表示的检索模型已成为第一阶段检索的必不可少的分支。这些检索员受益于代表学习朝着压缩全球序列级嵌入的进步。但是,它们很容易忽略本地的显着短语和实体在文本中提到的,这些短语通常在第一阶段的检索中扮演枢轴角色。为了减轻这种弱点,我们提议使一个密集的检索器对齐一个表现出色的词典意识代表模型。对齐方式是通过弱化的知识蒸馏来实现的,以通过两个方面来启发猎犬 - 1)词汇扬声的对比目标,以挑战密集编码器和2)一个配对的等级正规化,以使密集的模型的行为倾向于其他人的行为。我们在三个公共基准上评估了我们的模型,这表明,凭借可比的词典觉得回收犬作为老师,我们提议的密集人可以带来一致而重大的改进,甚至超过教师。此外,我们发现我们对密集猎犬的改进是与标准排名蒸馏的补充,这可以进一步提高最先进的性能。
translated by 谷歌翻译
密集的段落检索旨在根据查询和段落的密集表示(即矢量)从大型语料库中检索查询的相关段落。最近的研究探索了改善预训练的语言模型,以提高密集的检索性能。本文提出了COT-MAE(上下文掩盖自动编码器),这是一种简单而有效的生成性预训练方法,可用于密集通道检索。 COT-MAE采用了不对称的编码器架构,该体系结构学会通过自我监督和上下文监督的掩盖自动编码来将句子语义压缩到密集的矢量中。精确,自我监督的掩盖自动编码学会学会为文本跨度内的令牌的语义建模,并学习上下文监督的蒙版自动编码学学习以建模文本跨度之间的语义相关性。我们对大规模通道检索基准进行实验,并显示出对强基础的大量改进,证明了COT-MAE的效率很高。
translated by 谷歌翻译
关于信息检索的许多最新研究集中在如何从一项任务(通常具有丰富的监督数据)转移到有限的其他各种任务,并隐含地假设可以从一个任务概括到所有其余的任务。但是,这忽略了这样一个事实,即有许多多样化和独特的检索任务,每个任务都针对不同的搜索意图,查询和搜索域。在本文中,我们建议使用几乎没有散热的检索,每个任务都有一个简短的描述和一些示例。为了扩大一些示例的功能,我们提出了针对检索器(即将到来)的及时基本查询生成,该查询将大型语言模型(LLM)作为几个弹片查询生成器,并根据生成的数据创建特定于任务的检索器。通过LLM的概括能力提供动力,即要来源使得可以仅基于一些示例{没有自然问题或MS MARCO来训练%问题生成器或双重编码器,就可以仅基于一些示例{没有}来创建特定于任务的端到端检索。出乎意料的是,LLM提示不超过8个示例,允许双重编码器在MARCO(例如Colbert V2)上训练的大量工程模型平均在11个检索套件中超过1.2 NDCG。使用相同生成数据的进一步培训标准尺寸的重新级别可获得5.0点NDCG的改进。我们的研究确定,查询产生比以前观察到的更有效,尤其是在给出少量特定于任务知识的情况下。
translated by 谷歌翻译
We present Hybrid Infused Reranking for Passages Retrieval (HYRR), a framework for training rerankers based on a hybrid of BM25 and neural retrieval models. Retrievers based on hybrid models have been shown to outperform both BM25 and neural models alone. Our approach exploits this improved performance when training a reranker, leading to a robust reranking model. The reranker, a cross-attention neural model, is shown to be robust to different first-stage retrieval systems, achieving better performance than rerankers simply trained upon the first-stage retrievers in the multi-stage systems. We present evaluations on a supervised passage retrieval task using MS MARCO and zero-shot retrieval tasks using BEIR. The empirical results show strong performance on both evaluations.
translated by 谷歌翻译
Dense retrieval aims to map queries and passages into low-dimensional vector space for efficient similarity measuring, showing promising effectiveness in various large-scale retrieval tasks. Since most existing methods commonly adopt pre-trained Transformers (e.g. BERT) for parameter initialization, some work focuses on proposing new pre-training tasks for compressing the useful semantic information from passages into dense vectors, achieving remarkable performances. However, it is still challenging to effectively capture the rich semantic information and relations about passages into the dense vectors via one single particular pre-training task. In this work, we propose a multi-task pre-trained model, MASTER, that unifies and integrates multiple pre-training tasks with different learning objectives under the bottlenecked masked autoencoder architecture. Concretely, MASTER utilizes a multi-decoder architecture to integrate three types of pre-training tasks: corrupted passages recovering, related passage recovering and PLMs outputs recovering. By incorporating a shared deep encoder, we construct a representation bottleneck in our architecture, compressing the abundant semantic information across tasks into dense vectors. The first two types of tasks concentrate on capturing the semantic information of passages and relationships among them within the pre-training corpus. The third one can capture the knowledge beyond the corpus from external PLMs (e.g. GPT-2). Extensive experiments on several large-scale passage retrieval datasets have shown that our approach outperforms the previous state-of-the-art dense retrieval methods. Our code and data are publicly released in https://github.com/microsoft/SimXNS
translated by 谷歌翻译
神经信息检索(IR)具有极大的搜索和其他知识密集型语言任务。虽然许多神经IR方法将查询和文档编码为单载表示,但后期交互模型在每个令牌的粒度下产生多向量表示,并将相关性建模分解为可伸缩的令牌级计算。这种分解已被证明可以使迟到的交互更有效,但它以幅度的数量级膨胀这些模型的空间占地面积。在这项工作中,我们介绍了Colbertv2,这是一种猎犬,其与去噪的监督策略相结合的侵略性的残余压缩机制,同时提高晚期互动的质量和空间足迹。我们在各种基准中评估COLBertv2,在培训域内和外部建立最先进的质量,同时减少了晚期互动模型的空间足迹5-8 $ \ times $。
translated by 谷歌翻译
密集的检索方法可以克服词汇差距并导致显着改善的搜索结果。但是,它们需要大量的培训数据,这些数据不适用于大多数域。如前面的工作所示(Thakur等,2021b),密集检索的性能在域移位下严重降低。这限制了密集检索方法的使用,只有几个具有大型训练数据集的域。在本文中,我们提出了一种新颖的无监督域适配方法生成伪标签(GPL),其将查询发生器与来自跨编码器的伪标记相结合。在六种代表性域专用数据集中,我们发现所提出的GPL可以优于箱子外的最先进的密集检索方法,最高可达8.9点NDCG @ 10。 GPL需要来自目标域的少(未标记)数据,并且在其培训中比以前的方法更强大。我们进一步调查了六种最近训练方法在检索任务的域改编方案中的作用,其中只有三种可能会产生改善的结果。最好的方法,Tsdae(Wang等,2021)可以与GPL结合,在六个任务中产生了1.0点NDCG @ 10的另一个平均改善。
translated by 谷歌翻译
Recent progress in Natural Language Understanding (NLU) is driving fast-paced advances in Information Retrieval (IR), largely owed to ne-tuning deep language models (LMs) for document ranking.While remarkably e ective, the ranking models based on these LMs increase computational cost by orders of magnitude over prior approaches, particularly as they must feed each query-document pair through a massive neural network to compute a single relevance score. To tackle this, we present ColBERT, a novel ranking model that adapts deep LMs (in particular, BERT) for e cient retrieval. ColBERT introduces a late interaction architecture that independently encodes the query and the document using BERT and then employs a cheap yet powerful interaction step that models their ne-grained similarity. By delaying and yet retaining this negranular interaction, ColBERT can leverage the expressiveness of deep LMs while simultaneously gaining the ability to pre-compute document representations o ine, considerably speeding up query processing. Beyond reducing the cost of re-ranking the documents retrieved by a traditional model, ColBERT's pruning-friendly interaction mechanism enables leveraging vector-similarity indexes for end-to-end retrieval directly from a large document collection. We extensively evaluate ColBERT using two recent passage search datasets. Results show that ColBERT's e ectiveness is competitive with existing BERT-based models (and outperforms every non-BERT baseline), while executing two orders-of-magnitude faster and requiring four orders-of-magnitude fewer FLOPs per query.
translated by 谷歌翻译
Deave Learning模型命名为变形金刚实现了最先进的导致绝大多数NLP任务,以增加计算复杂性和高记忆消耗。在实时推理中使用变压器模型成为在生产中实施时的重大挑战,因为它需要昂贵的计算资源。需要更频率的吞吐量执行变压器的执行越大,并且切换到较小的编码器导致精度降低。我们的论文致力于如何为信息检索管道排名步骤选择合适架构的问题,以便更改变压器编码器的所需呼叫的数量最小,最大可实现的排名质量。我们调查了多种延迟交互模型,如COLBert和Poly-Concoder架构以及它们的修改。此外,我们负责搜索索引的内存占用空间,并尝试应用学习 - 哈希方法,以二值从变压器编码器二值化。使用TREC 2019-2021和MARCO DEV数据集提供评估结果。
translated by 谷歌翻译
信息检索的任务是许多自然语言处理系统的重要组成部分,例如开放式域问题回答。尽管传统方法是基于手工制作的功能,但基于神经网络的连续表示最近获得了竞争结果。使用此类方法的一个挑战是获取监督数据以训练回猎犬模型,该模型对应于一对查询和支持文档。在本文中,我们提出了一种技术,以学习以知识蒸馏的启发,并不需要带注释的查询和文档对。我们的方法利用读者模型的注意分数,用于根据检索文档解决任务,以获取猎犬的合成标签。我们评估我们的方法回答,获得最新结果。
translated by 谷歌翻译
稀疏的词汇表现学习已经证明了在近期模型中提高通道检索效果,例如Deepumact,Unicoil和Splade。本文介绍了一种简单而有效的方法,用于通过引入稀疏屏蔽方案来控制稀疏性和自学方法来控制诽谤和自学方法来模拟脱锁表示模拟缺陷表示来缩小通道检索的词汇表格的简单但有效的方法。我们模型的基本实施具有更精致的方法,实现了有效性和效率之间的良好平衡。我们的方法简单地为未来的词汇表达学习探索开辟了门,以便检索。
translated by 谷歌翻译