Generative models for learning combinatorial structures have transformative impacts in many applications. However, existing approaches fail to offer efficient and accurate learning results. Because of the highly intractable nature of the gradient estimation of the learning objective subject to combinatorial constraints. Existing gradient estimation methods would easily run into exponential time/memory space, or incur huge estimation errors due to improper approximation. We develop NEural Lovasz Sampler (Nelson), a neural network based on Lov\'asz Local Lemma (LLL). We show it guarantees to generate samples satisfying combinatorial constraints from the distribution of the constrained Markov Random Fields model (MRF) under certain conditions. We further present a fully differentiable contrastive-divergence-based learning framework on constrained MRF (Nelson-CD). Meanwhile, Nelson-CD being fully differentiable allows us to take advantage of the parallel computing power of GPUs, resulting in great efficiency. Experimental results on three real-world combinatorial problems reveal that Nelson learns to generate 100% valid structures. In comparison, baselines either time out on large-size data sets or fail to generate valid structures, whereas Nelson scales much better with problem size. In addition, Nelson outperforms baselines in various learning metrics, such as log-likelihood and MAP scores.
translated by 谷歌翻译
我们提供了静态分析,用于发现给定概率程序的可区分或更普遍的平滑部分,并展示如何使用分析来改善路径梯度估计器,这是后验推理和模型学习的最流行方法之一。我们的改进将估计器的范围从可区分模型到非差异性模型的范围,而无需用户手动干预;改进的估计器会使用我们的静态分析自动识别给定概率程序的可区分部分,并将路径梯度估计器应用于已识别的零件,同时使用程序的其余部分使用更通用但效率较低的估计器(称为得分估计器)。我们的分析具有令人惊讶的微妙的声音论点,部分原因是从程序分析设计师的角度看待某些目标平滑性属性的不当行为。例如,某些平滑度属性不能通过函数组成保留,这使得在不牺牲精度的情况下很难分析顺序组成。我们在目标平滑度属性上制定了五个假设,证明了我们在这些假设下的分析的健全性,并表明我们的主要示例满足了这些假设。我们还表明,通过使用分析中的信息,我们的改进梯度估计器满足了重要的可不同性要求,因此,在轻度的规律性条件下,平均计算正确的估计值,即,它返回无偏见的估计值。我们在Pyro语言中使用代表性概率程序进行的实验表明,我们的静态分析能够准确地识别这些程序的平滑部分,并使我们改进的路径梯度估计器利用这些程序中的所有高性能机会。
translated by 谷歌翻译
我们提出了一个通用图形神经网络体系结构,可以作为任何约束满意度问题(CSP)作为末端2端搜索启发式训练。我们的体系结构可以通过政策梯度下降进行无监督的培训,以纯粹的数据驱动方式为任何CSP生成问题的特定启发式方法。该方法基于CSP的新型图表,既是通用又紧凑的,并且使我们能够使用一个GNN处理所有可能的CSP实例,而不管有限的Arity,关系或域大小。与以前的基于RL的方法不同,我们在全局搜索动作空间上运行,并允许我们的GNN在随机搜索的每个步骤中修改任何数量的变量。这使我们的方法能够正确利用GNN的固有并行性。我们进行了彻底的经验评估,从随机数据(包括图形着色,Maxcut,3-SAT和Max-K-Sat)中学习启发式和重要的CSP。我们的方法表现优于先验的神经组合优化的方法。它可以在测试实例上与常规搜索启发式竞争,甚至可以改善几个数量级,结构上比训练中看到的数量级更为复杂。
translated by 谷歌翻译
随着深度学习技术的快速发展,各种最近的工作试图应用图形神经网络(GNN)来解决诸如布尔满足(SAT)之类的NP硬问题,这表明了桥接机器学习与象征性差距的潜力。然而,GNN预测的解决方案的质量并未在文献中进行很好地研究。在本文中,我们研究了GNNS在学习中解决最大可满足性(MaxSAT)问题的能力,从理论和实践角度来看。我们构建了两种GNN模型来学习来自基准的MaxSAT实例的解决方案,并显示GNN通过实验评估解决MaxSAT问题的有吸引力。我们还基于算法对准理论,我们还提出了GNNS可以在一定程度上学会解决MaxSAT问题的影响的理论解释。
translated by 谷歌翻译
We present the Neural Satisfiability Network (NSNet), a general neural framework that models satisfiability problems as probabilistic inference and meanwhile exhibits proper explainability. Inspired by the Belief Propagation (BP), NSNet uses a novel graph neural network (GNN) to parameterize BP in the latent space, where its hidden representations maintain the same probabilistic interpretation as BP. NSNet can be flexibly configured to solve both SAT and #SAT problems by applying different learning objectives. For SAT, instead of directly predicting a satisfying assignment, NSNet performs marginal inference among all satisfying solutions, which we empirically find is more feasible for neural networks to learn. With the estimated marginals, a satisfying assignment can be efficiently generated by rounding and executing a stochastic local search. For #SAT, NSNet performs approximate model counting by learning the Bethe approximation of the partition function. Our evaluations show that NSNet achieves competitive results in terms of inference accuracy and time efficiency on multiple SAT and #SAT datasets.
translated by 谷歌翻译
组合优化是运营研究和计算机科学领域的一个公认领域。直到最近,它的方法一直集中在孤立地解决问题实例,而忽略了它们通常源于实践中的相关数据分布。但是,近年来,人们对使用机器学习,尤其是图形神经网络(GNN)的兴趣激增,作为组合任务的关键构件,直接作为求解器或通过增强确切的求解器。GNN的电感偏差有效地编码了组合和关系输入,因为它们对排列和对输入稀疏性的意识的不变性。本文介绍了对这个新兴领域的最新主要进步的概念回顾,旨在优化和机器学习研究人员。
translated by 谷歌翻译
已经引入了生成流量网络(GFlowNETS)作为在主动学习背景下采样多样化候选的方法,具有培训目标,其使它们与给定奖励功能成比例地进行比例。在本文中,我们显示了许多额外的GFLOWN的理论特性。它们可用于估计联合概率分布和一些变量未指定的相应边际分布,并且特别感兴趣地,可以代表像集合和图形的复合对象的分布。 Gflownets摊销了通常通过计算昂贵的MCMC方法在单个但训练有素的生成通行证中进行的工作。它们还可用于估计分区功能和自由能量,给定子集(子图)的超标(超图)的条件概率,以及给定集合(图)的所有超标仪(超图)的边际分布。我们引入了熵和相互信息估计的变体,从帕累托前沿采样,与奖励最大化策略的连接,以及随机环境的扩展,连续动作和模块化能量功能。
translated by 谷歌翻译
大多数-AT是确定联合正常形式(CNF)中输入$ N $的最低价公式的问题至少为2 ^ {n-1} $令人满意的作业。在对概率规划和推论复杂性的各种AI社区中,广泛研究了多数饱和问题。虽然大多数饱满为期40多年来,但自然变体的复杂性保持开放:大多数 - $ k $ SAT,其中输入CNF公式仅限于最多$ k $的子句宽度。我们证明,每辆$ k $,大多数 - $ k $ sat是在p的。事实上,对于任何正整数$ k $和ratic $ \ rho \ in(0,1)$ in(0,1)$与有界分比者,我们给出了算法这可以确定给定的$ k $ -cnf是否至少有$ \ rho \ cdot 2 ^ n $令人满意的分配,在确定性线性时间(而先前的最着名的算法在指数时间中运行)。我们的算法对计算复杂性和推理的复杂性具有有趣的积极影响,显着降低了相关问题的已知复杂性,例如E-Maj-$ K $ Sat和Maj-Maj- $ K $ Sat。在我们的方法中,通过提取在$ k $ -cnf的相应设置系统中发现的向日葵,可以通过提取向日葵来解决阈值计数问题的有效方法。我们还表明,大多数 - $ k $ sat的易腐烂性有些脆弱。对于密切相关的gtmajority-sat问题(我们询问给定公式是否超过2 ^ {n-1} $满足分配),这已知是pp-cleanting的,我们表明gtmajority-$ k $ sat在p for $ k \ le 3 $,但为$ k \ geq 4 $完成np-cleante。这些结果是违反直觉的,因为这些问题的“自然”分类将是PP完整性,因为GTMAJority的复杂性存在显着差异 - $ k $ SAT和MOSTION- $ K $ SAT为所有$ k \ ge 4 $。
translated by 谷歌翻译
Generating diverse solutions to the Boolean Satisfiability Problem (SAT) is a hard computational problem with practical applications for testing and functional verification of software and hardware designs. We explore the way to generate such solutions using Denoising Diffusion coupled with a Graph Neural Network to implement the denoising function. We find that the obtained accuracy is similar to the currently best purely neural method and the produced SAT solutions are highly diverse, even if the system is trained with non-random solutions from a standard solver.
translated by 谷歌翻译
象征性的AI社区越来越多地试图在神经符号结构中接受机器学习,但由于文化障碍,仍在挣扎。为了打破障碍,这份相当有思想的个人备忘录试图解释和纠正统计,机器学习和深入学习的惯例,从局外人的角度进行深入学习。它提供了一个分步协议,用于设计一个机器学习系统,该系统满足符号AI社区认真对待所必需的最低理论保证,即,它讨论“在哪些条件下,我们可以停止担心和接受统计机器学习。 “一些亮点:大多数教科书都是为计划专门研究STAT/ML/DL的人编写的,应该接受术语。该备忘录适用于经验丰富的象征研究人员,他们听到了很多嗡嗡声,但仍然不确定和持怀疑态度。有关STAT/ML/DL的信息目前太分散或嘈杂而无法投资。此备忘录优先考虑紧凑性,并特别注意与象征性范式相互共鸣的概念。我希望这份备忘录能节省时间。它优先考虑一般数学建模,并且不讨论任何特定的函数近似器,例如神经网络(NNS),SVMS,决策树等。它可以对校正开放。将此备忘录视为与博客文章相似的内容,采用有关Arxiv的论文的形式。
translated by 谷歌翻译
在随着时间变化的组合环境中的在线决策激励,我们研究了将离线算法转换为其在线对应物的问题。我们专注于使用贪婪算法对局部错误的贪婪算法进行恒定因子近似的离线组合问题。对于此类问题,我们提供了一个通用框架,该框架可有效地将稳健的贪婪算法转换为使用Blackwell的易近算法。我们证明,在完整信息设置下,由此产生的在线算法具有$ O(\ sqrt {t})$(近似)遗憾。我们进一步介绍了Blackwell易接近性的强盗扩展,我们称之为Bandit Blackwell的可接近性。我们利用这一概念将贪婪的稳健离线算法转变为匪(t^{2/3})$(近似)$(近似)的遗憾。展示了我们框架的灵活性,我们将脱机之间的转换应用于收入管理,市场设计和在线优化的几个问题,包括在线平台中的产品排名优化,拍卖中的储备价格优化以及supperular tossodular最大化。 。我们还将还原扩展到连续优化的类似贪婪的一阶方法,例如用于最大化连续强的DR单调下调功能,这些功能受到凸约束的约束。我们表明,当应用于这些应用程序时,我们的转型会导致新的后悔界限或改善当前已知界限。我们通过为我们的两个应用进行数值模拟来补充我们的理论研究,在这两种应用中,我们都观察到,转换的数值性能在实际情况下优于理论保证。
translated by 谷歌翻译
Log-linear models are a family of probability distributions which capture relationships between variables. They have been proven useful in a wide variety of fields such as epidemiology, economics and sociology. The interest in using these models is that they are able to capture context-specific independencies, relationships that provide richer structure to the model. Many approaches exist for automatic learning of the independence structure of log-linear models from data. The methods for evaluating these approaches, however, are limited, and are mostly based on indirect measures of the complete density of the probability distribution. Such computation requires additional learning of the numerical parameters of the distribution, which introduces distortions when used for comparing structures. This work addresses this issue by presenting the first measure for the direct and efficient comparison of independence structures of log-linear models. Our method relies only on the independence structure of the models, which is useful when the interest lies in obtaining knowledge from said structure, or when comparing the performance of structure learning algorithms, among other possible uses. We present proof that the measure is a metric, and a method for its computation that is efficient in the number of variables of the domain.
translated by 谷歌翻译
我们提出了改进的算法,并为身份测试$ n $维分布的问题提供了统计和计算下限。在身份测试问题中,我们将作为输入作为显式分发$ \ mu $,$ \ varepsilon> 0 $,并访问对隐藏分布$ \ pi $的采样甲骨文。目标是区分两个分布$ \ mu $和$ \ pi $是相同的还是至少$ \ varepsilon $ -far分开。当仅从隐藏分布$ \ pi $中访问完整样本时,众所周知,可能需要许多样本,因此以前的作品已经研究了身份测试,并额外访问了各种有条件采样牙齿。我们在这里考虑一个明显弱的条件采样甲骨文,称为坐标Oracle,并在此新模型中提供了身份测试问题的相当完整的计算和统计表征。我们证明,如果一个称为熵的分析属性为可见分布$ \ mu $保留,那么对于任何使用$ \ tilde {o}(n/\ tilde {o}),有一个有效的身份测试算法Varepsilon)$查询坐标Oracle。熵的近似张力是一种经典的工具,用于证明马尔可夫链的最佳混合时间边界用于高维分布,并且最近通过光谱独立性为许多分布族建立了最佳的混合时间。我们将算法结果与匹配的$ \ omega(n/\ varepsilon)$统计下键进行匹配的算法结果补充,以供坐标Oracle下的查询数量。我们还证明了一个计算相变:对于$ \ {+1,-1,-1 \}^n $以上的稀疏抗抗铁磁性模型,在熵失败的近似张力失败的状态下,除非RP = np,否则没有有效的身份测试算法。
translated by 谷歌翻译
由于机器学习,统计和科学的应用,多边缘最佳运输(MOT)引起了极大的兴趣。但是,在大多数应用中,MOT的成功受到缺乏有效算法的严重限制。实际上,MOT一般需要在边际K及其支撑大小n的数量中指数时间n。本文开发了一个关于“结构”在poly(n,k)时间中可溶解的一般理论。我们开发了一个统一的算法框架,用于通过表征不同算法所需的“结构”来解决poly(n,k)时间中的MOT,这是根据双重可行性甲骨文的简单变体所需的。该框架有几个好处。首先,它使我们能够证明当前是最流行的MOT算法的Sinkhorn算法比其他算法要在poly(n,k)时间中求解MOT所需的结构更严格。其次,我们的框架使得为给定的MOT问题开发poly(n,k)时间算法变得更加简单。特别是(大约)解决双重可行性Oracle是必要和足够的 - 这更适合标准算法技术。我们通过为三个通用类成本结构类别的poly(n,k)时间算法开发poly(n,k)时间算法来说明这种易用性:(1)图形结构; (2)设定优化结构; (3)低阶和稀疏结构。对于结构(1),我们恢复了Sindhorn具有poly(n,k)运行时的已知结果;此外,我们为计算精确且稀疏的解决方案提供了第一个poly(n,k)时间算法。对于结构(2) - (3),我们给出了第一个poly(n,k)时间算法,甚至用于近似计算。这三个结构一起涵盖了许多MOT的当前应用。
translated by 谷歌翻译
在本文中,我们提出了一个自然的单个偏好(IP)稳定性的概念,该概念要求每个数据点平均更接近其自身集群中的点,而不是其他群集中的点。我们的概念可以从几个角度的动机,包括游戏理论和算法公平。我们研究了与我们提出的概念有关的几个问题。我们首先表明,确定给定数据集通常允许进行IP稳定的聚类通常是NP-HARD。结果,我们探索了在某些受限度量空间中查找IP稳定聚类的有效算法的设计。我们提出了一种poly Time算法,以在实际线路上找到满足精确IP稳定性的聚类,并有效地算法来找到针对树度量的IP稳定2聚类。我们还考虑放松稳定性约束,即,与其他任何集群相比,每个数据点都不应太远。在这种情况下,我们提供具有不同保证的多时间算法。我们在实际数据集上评估了一些算法和几种标准聚类方法。
translated by 谷歌翻译
继承是一种确定性算法,用于生成可以被视为满足输入时刻条件的随机样本的数据点。该算法基于高维动力系统的复杂行为,并由统计推断的最大熵原理的启发。在本文中,我们提出了埃尔特联算法的延伸,称为熵放牧,它产生一系列分布而不是点。熵放映是从最大熵原理获得的目标函数的优化。使用所提出的熵放牧算法作为框架,我们讨论了勃起与最大熵原理之间的更近的联系。具体而言,我们将原始的掠过算法解释为熵牧群的易缩放版,其理想的输出分布在数学上表示。我们进一步讨论了掠过算法的复杂行为如何有助于优化。我们认为,所提出的熵扩建算法扩展了爬行到概率建模的应用。与原来的放牧相比,熵放牧可以产生平滑的分布,使得两个有效的概率密度计算和样本产生都变得可能。为了证明这些研究中这些论点的可行性,进行了数值实验,包括合成和实际数据的与其他常规方法的比较。
translated by 谷歌翻译
Perturb-and-MAP offers an elegant approach to approximately sample from an energy-based model (EBM) by computing the maximum-a-posteriori (MAP) configuration of a perturbed version of the model. Sampling in turn enables learning. However, this line of research has been hindered by the general intractability of the MAP computation. Very few works venture outside tractable models, and when they do, they use linear programming approaches, which as we show, have several limitations. In this work, we present perturb-and-max-product (PMP), a parallel and scalable mechanism for sampling and learning in discrete EBMs. Models can be arbitrary as long as they are built using tractable factors. We show that (a) for Ising models, PMP is orders of magnitude faster than Gibbs and Gibbs-with-Gradients (GWG) at learning and generating samples of similar or better quality; (b) PMP is able to learn and sample from RBMs; (c) in a large, entangled graphical model in which Gibbs and GWG fail to mix, PMP succeeds.Preprint. Under review.
translated by 谷歌翻译
优化在离散变量上的高度复杂的成本/能源功能是不同科学学科和行业的许多公开问题的核心。一个主要障碍是在硬实例中的某些变量子集之间的出现,导致临界减慢或集体冻结了已知的随机本地搜索策略。通常需要指数计算工作来解冻这种变量,并探索配置空间的其他看不见的区域。在这里,我们通过开发自适应梯度的策略来介绍一个量子启发的非本球非识别蒙特卡罗(NMC)算法,可以有效地学习成本函数的关键实例的几何特征。该信息随行使用,以构造空间不均匀的热波动,用于以各种长度尺度集体未填充变量,规避昂贵的勘探与开发权衡。我们将算法应用于两个最具挑战性的组合优化问题:随机k可满足(K-SAT)附近计算阶段转换和二次分配问题(QAP)。我们在专业的确定性求解器和通用随机求解器上观察到显着的加速和鲁棒性。特别是,对于90%的随机4-SAT实例,我们发现了最佳专用确定性算法无法访问的解决方案,该算法(SP)具有最强的10%实例的解决方案质量的大小提高。我们还通过最先进的通用随机求解器(APT)显示出在最先进的通用随机求解器(APT)上的时间到溶液的两个数量级改善。
translated by 谷歌翻译
工作流程满意度问题(WSP)是一个充分研究的问题,在访问控制方面寻求授权用户分配工作流程的每个步骤,但要受工作流规范约束。人们注意到,与WSP的现实世界实例中的用户数量相比,数字$ k $通常很少。因此,$ k $被认为是WSP参数复杂性研究中的参数。虽然通常证明WSP为W [1] -HARD,但WSP仅限于用户独立的(UI)约束的特殊情况,是固定参数可拖动的(FPT)。但是,对UI限制的限制可能是不切实际的。为了有效处理非UI约束,我们介绍了约束的分支因素的概念。只要约束的分支因子相对较小,并且非UI约束的数量是合理的,那么WSP就可以在fpt时间内解决。扩展了Karapetyan等人的结果。 (2019年),我们证明了通用求解器能够在与适当的配方一起使用时在WSP上实现与FPT一样的性能。这使人们能够解决大多数实用的WSP实例。尽管本身很重要,但我们希望这一结果还将激励研究人员寻找其他FPT问题的FPT感知表述。
translated by 谷歌翻译
本文展示了如何适应$ k $ -MEANS问题的几种简单和经典的基于采样的算法,以使用离群值设置。最近,Bhaskara等人。 (Neurips 2019)展示了如何将古典$ K $ -MEANS ++算法适应与异常值的设置。但是,他们的算法需要输出$ o(\ log(k)\ cdot z)$ outiers,其中$ z $是true Outliers的数量,以匹配$ o(\ log k)$ - 近似值的$ k的近似保证$ -Means ++。在本文中,我们以他们的想法为基础,并展示了如何适应几个顺序和分布式的$ k $ - 均值算法,但使用离群值来设置,但具有更强的理论保证:我们的算法输出$(1+ \ VAREPSILON)z $ OUTLIERS Z $ OUTLIERS在实现$ o(1 / \ varepsilon)$ - 近似目标函数的同时。在顺序世界中,我们通过改编Lattanzi和Sohler的最新算法来实现这一目标(ICML 2019)。在分布式设置中,我们适应了Guha等人的简单算法。 (IEEE Trans。知道和数据工程2003)以及Bahmani等人的流行$ K $ -Means $ \ | $。 (PVLDB 2012)。我们技术的理论应用是一种具有运行时间$ \ tilde {o}(nk^2/z)$的算法,假设$ k \ ll z \ ll n $。这与Omacle模型中此问题的$ \ Omega(NK^2/z)$的匹配下限相互补。
translated by 谷歌翻译