建筑环境中许多物体的形状由他们与人体的关系决定:一个人将如何与这个对象进行互动? 3D形状的现有数据驱动的生成模型产生合理的物体,但不会理由对人体的那些物体的关系。在本文中,我们学习了3D形状的身体感知生成模型。具体而言,我们培养椅子的生成型号,一种无处不在的形状类别,可以在给定的身体形状或坐姿姿势调节。身体形状调节的型号生产椅子,为具有给定体形的人舒适;姿势调节模型生产适应坐姿的椅子。要训​​练这些模型,我们定义了“坐姿匹配”度量标准和小说“坐姿舒适”度量。计算这些指标需要昂贵的优化将身体置于椅子上,这太慢被用作用于训练生成模型的损耗功能。因此,我们训练神经网络以有效地近似这些度量。我们使用我们的方法培训三个身体感知生成形状模型:基于结构的零件的发电机,点云发生器和隐式表面发生器。在所有情况下,我们的方法都生产适应其输出椅形状以输入人体规格的型号。
translated by 谷歌翻译
综合虚拟人类及其3D环境之间的自然相互作用对于众多应用程序(例如计算机游戏和AR/VR体验)至关重要。我们的目标是使人类与给定的3D场景进行互动,该场景由高级语义规格控制为动作类别和对象实例,例如“坐在椅子上”。将相互作用语义纳入生成框架中的主要挑战是学习一个共同表示,该表示有效地捕获了异质信息,包括人体的关节,3D对象几何以及相互作用的意图。为了应对这一挑战,我们设计了一种基于变压器的新型生成模型,其中铰接的3D人体表面点和3D对象共同编码在统一的潜在空间中,并且人与物体之间的相互作用语义是通过嵌入的。位置编码。此外,受到人类可以同时与多个对象相互作用的相互作用的组成性质的启发,我们将相互作用语义定义为不同原子动作对象对的组成。我们提出的生成模型自然可以结合不同数量的原子相互作用,从而无需复合相互作用数据即可合成组成的人类习惯相互作用。我们使用交互语义标签和场景实例分割扩展了Prox数据集,以评估我们的方法,并证明我们的方法可以通过语义控制生成现实的人类场景相互作用。我们的感知研究表明,我们合成的虚拟人类可以自然与3D场景相互作用,从而超过现有方法。我们将方法硬币命名,用于与语义控制的组成相互作用合成。代码和数据可在https://github.com/zkf1997/coins上获得。
translated by 谷歌翻译
Recent approaches to drape garments quickly over arbitrary human bodies leverage self-supervision to eliminate the need for large training sets. However, they are designed to train one network per clothing item, which severely limits their generalization abilities. In our work, we rely on self-supervision to train a single network to drape multiple garments. This is achieved by predicting a 3D deformation field conditioned on the latent codes of a generative network, which models garments as unsigned distance fields. Our pipeline can generate and drape previously unseen garments of any topology, whose shape can be edited by manipulating their latent codes. Being fully differentiable, our formulation makes it possible to recover accurate 3D models of garments from partial observations -- images or 3D scans -- via gradient descent. Our code will be made publicly available.
translated by 谷歌翻译
生成数字人类,现实地具有许多应用,并且被广泛研究,但现有的方法专注于身体的主要肢体,忽略了手和头部。手已经分开研究,但重点是在产生现实的静态爪子上。要综合与世界互动的虚拟字符,我们需要同时生成全身运动和现实手掌。两个子问题都是挑战自己,在一起,姿势的状态空间显着更大,手和身体运动的尺度不同,而且整体姿势和手柄必须同意,满足身体限制,以及是合理的。此外,头部涉及,因为化身必须查看对象与它交互。我们第一次解决了生成一个抓住未知物体的头像的全身,手和头部运动的问题。作为输入,我们的方法,称为目标,采用3D对象,其位置和起始3D身体姿势和形状。目标使用两种新颖的网络输出一系列全身姿势。首先,GNET通过现实的身体,头部,臂和手姿势产生目标全体掌握,以及手对象接触。其次,MNET生成起始和目标姿势之间的运动。这是具有挑战性的,因为它需要头像与脚踏接触朝向物体走向物体,将头部向朝向它朝向它,伸出伸展,并用现实的手姿势和手工触点抓住它。为了实现这一网络,网络利用组合SMPL-X身体参数和3D顶点偏移的表示。我们在标准数据集上培训和评估目标,定性和定量。结果表明,目标概括了不佳的对象,表现优于基线。目标是迈向综合现实的全身对象掌握。
translated by 谷歌翻译
为了使3D人的头像广泛可用,我们必须能够在任意姿势中产生各种具有不同身份和形状的多种3D虚拟人。由于衣服的身体形状,复杂的关节和由此产生的丰富,随机几何细节,这项任务是挑战的挑战。因此,目前代表3D人的方法不提供服装中的人的全部生成模型。在本文中,我们提出了一种新的方法,这些方法可以学习在具有相应的剥皮重量的各种衣服中产生详细的3D形状。具体而言,我们设计了一个多主题前进的剥皮模块,这些模块只有几个受试者的未预装扫描。为了捕获服装中高频细节的随机性,我们利用对抗的侵害制定,鼓励模型捕获潜在统计数据。我们提供了经验证据,这导致了皱纹的局部细节的现实生成。我们表明我们的模型能够产生佩戴各种和详细的衣服的自然人头像。此外,我们表明我们的方法可以用于拟合人类模型到原始扫描的任务,优于以前的最先进。
translated by 谷歌翻译
我们提出了一种无监督的方法,用于对铰接对象的3D几何形式表示学习,其中不使用图像置态对或前景口罩进行训练。尽管可以通过现有的3D神经表示的明确姿势控制铰接物体的影像图像,但这些方法需要地面真相3D姿势和前景口罩进行训练,这是昂贵的。我们通过学习GAN培训来学习表示形式来消除这种需求。该发电机经过训练,可以通过对抗训练从随机姿势和潜在向量产生逼真的铰接物体图像。为了避免GAN培训的高计算成本,我们提出了基于三平面的铰接对象的有效神经表示形式,然后为其无监督培训提供了基于GAN的框架。实验证明了我们方法的效率,并表明基于GAN的培训可以在没有配对监督的情况下学习可控的3D表示。
translated by 谷歌翻译
Generative models, as an important family of statistical modeling, target learning the observed data distribution via generating new instances. Along with the rise of neural networks, deep generative models, such as variational autoencoders (VAEs) and generative adversarial network (GANs), have made tremendous progress in 2D image synthesis. Recently, researchers switch their attentions from the 2D space to the 3D space considering that 3D data better aligns with our physical world and hence enjoys great potential in practice. However, unlike a 2D image, which owns an efficient representation (i.e., pixel grid) by nature, representing 3D data could face far more challenges. Concretely, we would expect an ideal 3D representation to be capable enough to model shapes and appearances in details, and to be highly efficient so as to model high-resolution data with fast speed and low memory cost. However, existing 3D representations, such as point clouds, meshes, and recent neural fields, usually fail to meet the above requirements simultaneously. In this survey, we make a thorough review of the development of 3D generation, including 3D shape generation and 3D-aware image synthesis, from the perspectives of both algorithms and more importantly representations. We hope that our discussion could help the community track the evolution of this field and further spark some innovative ideas to advance this challenging task.
translated by 谷歌翻译
我们呈现Hipnet,一个在许多姿势的多个科目上培训的神经隐式姿势网络。HIPNET可以从姿势特定的细节中解散特定主题细节,有效地使我们能够从一个受试者到另一个受试者的retrarget运动,或通过潜在空间插值在关键帧之间设置动画。为此,我们采用基于分层的基于骨架的表示,以便在规范的未浮现空间上学习符号距离功能。这种基于联合的分解使我们能够代表本地围绕身体关节周围的空间的细微细节。与以前的神经隐式方法不同,需要基础真实SDF进行培训,我们的模型我们只需要一个构成的骨架和点云进行培训,我们没有对传统的参数模型或传统的剥皮方法的依赖。我们在各种单一主题和多主题基准上实现最先进的结果。
translated by 谷歌翻译
机器学习的最近进步已经创造了利用一类基于坐标的神经网络来解决视觉计算问题的兴趣,该基于坐标的神经网络在空间和时间跨空间和时间的场景或对象的物理属性。我们称之为神经领域的这些方法已经看到在3D形状和图像的合成中成功应用,人体的动画,3D重建和姿势估计。然而,由于在短时间内的快速进展,许多论文存在,但尚未出现全面的审查和制定问题。在本报告中,我们通过提供上下文,数学接地和对神经领域的文学进行广泛综述来解决这一限制。本报告涉及两种维度的研究。在第一部分中,我们通过识别神经字段方法的公共组件,包括不同的表示,架构,前向映射和泛化方法来专注于神经字段的技术。在第二部分中,我们专注于神经领域的应用在视觉计算中的不同问题,超越(例如,机器人,音频)。我们的评论显示了历史上和当前化身的视觉计算中已覆盖的主题的广度,展示了神经字段方法所带来的提高的质量,灵活性和能力。最后,我们展示了一个伴随着贡献本综述的生活版本,可以由社区不断更新。
translated by 谷歌翻译
We describe the first method to automatically estimate the 3D pose of the human body as well as its 3D shape from a single unconstrained image. We estimate a full 3D mesh and show that 2D joints alone carry a surprising amount of information about body shape. The problem is challenging because of the complexity of the human body, articulation, occlusion, clothing, lighting, and the inherent ambiguity in inferring 3D from 2D. To solve this, we first use a recently published CNN-based method, DeepCut, to predict (bottom-up) the 2D body joint locations. We then fit (top-down) a recently published statistical body shape model, called SMPL, to the 2D joints. We do so by minimizing an objective function that penalizes the error between the projected 3D model joints and detected 2D joints. Because SMPL captures correlations in human shape across the population, we are able to robustly fit it to very little data. We further leverage the 3D model to prevent solutions that cause interpenetration. We evaluate our method, SMPLify, on the Leeds Sports, HumanEva, and Human3.6M datasets, showing superior pose accuracy with respect to the state of the art.
translated by 谷歌翻译
人类抓握合成具有许多应用,包括AR / VR,视频游戏和机器人。虽然已经提出了一些方法来为对象抓握和操纵产生现实的手对象交互,但通常只考虑手动与对象交互。在这项工作中,我们的目标是综合全身掌握运动。鉴于3D对象,我们的目标是产生多样化和自然的全身人类动作,方法和掌握物体。这项任务是具有挑战性的,因为它需要建模全身动态和灵巧的手指运动。为此,我们提出了由两个关键部件组成的Saga(随机全身抓取):(a)静态全身抓取姿势。具体地,我们提出了一种多任务生成模型,共同学习静态全身抓姿和人对象触点。 (b)抓住运动infilling。鉴于初始姿势和产生的全身抓握姿势作为运动的起始和结束姿势,我们设计了一种新的联络感知生成运动infilling模块,以产生各种掌握的掌握运动。我们展示了我们方法是第一代生物和表达全身运动的第一代框架,该方法是随机放置并掌握未经看的对象的逼真和表达全身运动。代码和视频可用于:https://jiahaoplus.github.io/saga/saga.html。
translated by 谷歌翻译
制造物体的3D模型对于填充虚拟世界和视觉和机器人技术的合成数据很重要。为了最有用,应该阐明此类对象:它们的部分应在与之互动时移动。尽管存在铰接式对象数据集,但创建它们是劳动密集型的。基于学习的零件动作预测可以有所帮助,但是所有现有方法都需要带注释的培训数据。在本文中,我们提出了一种无监督的方法,用于发现部分分段的3D形状集合中的铰接运动。我们的方法基于我们称之为闭合的概念:对象的部分的任何有效表达都应将对象保留在同一语义类别中(例如,椅子保持椅子)。我们使用一种算法来实现此概念,该算法优化了形状的零件运动参数,从而可以转换为集合中的其他形状。我们通过使用Partnet-Mobility数据集重新发现零件动作来评估我们的方法。对于几乎所有形状类别,我们方法的预测运动参数在地面真实注释方面的错误较低,表现优于两种监督运动预测方法。
translated by 谷歌翻译
仅使用单视2D照片的收藏集对3D感知生成对抗网络(GAN)的无监督学习最近取得了很多进展。然而,这些3D gan尚未证明人体,并且现有框架的产生的辐射场不是直接编辑的,从而限制了它们在下游任务中的适用性。我们通过开发一个3D GAN框架来解决这些挑战的解决方案,该框架学会在规范的姿势中生成人体或面部的辐射场,并使用显式变形场将其扭曲成所需的身体姿势或面部表达。使用我们的框架,我们展示了人体的第一个高质量的辐射现场生成结果。此外,我们表明,与未接受明确变形训练的3D GAN相比,在编辑其姿势或面部表情时,我们的变形感知训练程序可显着提高产生的身体或面部的质量。
translated by 谷歌翻译
皮肤多人线性(SMPL)模型可以通过将姿势和形状参数映射到体网格来代表人体。已经示出了通过不同的学习模型方便推断3D人类姿势和形状。但是,并非所有的姿势和形状参数值都会产生物理合理的甚至现实的身体网格。换句话说,SMPL受到不受限制的,因此可以通过直接优化其参数来重建从图像的人类或通过从图像学习映射到这些参数来导致从图像中的人类来实现无效的结果。在本文中,我们学习之前将SMPL参数限制为通过对抗性培训产生现实姿势的值。我们表明,我们的学习了先前涵盖了实际数据分布的多样性,便于从2D关卡点进行3D重建的优化,并在用于从图像回归时产生更好的姿势估计。我们发现基于球面分布的先前获得了最佳效果。此外,在所有这些任务中,它优于基于最先进的VAE的方法来限制SMPL参数。
translated by 谷歌翻译
有效地表示人体诸如人体之类的铰接物体是计算机视觉和图形中的重要问题。为了有效地模拟变形,现有方法使用多边形网格表示3D对象,并使用皮肤技术变形。本文介绍了神经表达的形状近似(NASA),这是一种替代框架,可以使用以姿势调节的神经指示函数有效地表示明显的可变形物体。使用NASA进行的占用测试是直接的,可以规定网格的复杂性和水紧身问题。我们证明了NASA对3D跟踪应用的有效性,并讨论了其他潜在扩展。
translated by 谷歌翻译
人类将他们的手和身体一起移动,沟通和解决任务。捕获和复制此类协调活动对于虚拟字符至关重要,以实际行为行为。令人惊讶的是,大多数方法分别对待身体和手的3D建模和跟踪。在这里,我们制定了一种手和身体的型号,并将其与全身4D序列合理。当扫描或捕获3D中的全身时,手很小,通常是部分闭塞,使其形状和难以恢复。为了应对低分辨率,闭塞和噪音,我们开发了一种名为Mano(具有铰接和非刚性变形的手模型)的新型号。曼诺从大约1000个高分辨率的3D扫描中学到了31个受试者的手中的大约一定的手。该模型是逼真的,低维,捕获非刚性形状的姿势变化,与标准图形封装兼容,可以适合任何人类的手。 Mano提供从手姿势的紧凑型映射,以构成混合形状校正和姿势协同效应的线性歧管。我们将Mano附加到标准参数化3D体形状模型(SMPL),导致完全铰接的身体和手部模型(SMPL + H)。我们通过用4D扫描仪捕获的综合体,自然,自然,自然的受试者的活动来说明SMPL + H.该配件完全自动,并导致全身型号,自然地移动详细的手动运动和在全身性能捕获之前未见的现实主义。模型和数据在我们的网站上自由用于研究目的(http://mano.is.tue.mpg.de)。
translated by 谷歌翻译
人类不断与日常对象互动以完成任务。为了了解这种相互作用,计算机需要从观察全身与场景的全身相互作用的相机中重建这些相互作用。由于身体和物体之间的阻塞,运动模糊,深度/比例模棱两可以及手和可抓握的物体零件的低图像分辨率,这是具有挑战性的。为了使问题可以解决,社区要么专注于互动的手,忽略身体或互动的身体,无视双手。 Grab数据集解决了灵活的全身互动,但使用基于标记的MOCAP并缺少图像,而行为则捕获了身体对象互动的视频,但缺乏手动细节。我们使用参数全身模型SMPL-X和已知的对象网格来解决一种新的方法,该方法与Intercap的先前工作局限性,该方法是一种新的方法,可重建从多视图RGB-D数据进行交互的整体和对象。为了应对上述挑战,Intercap使用了两个关键观察:(i)可以使用手和物体之间的接触来改善两者的姿势估计。 (ii)Azure Kinect传感器使我们能够建立一个简单的多视图RGB-D捕获系统,该系统在提供合理的相机间同步时最小化遮挡的效果。使用此方法,我们捕获了Intercap数据集,其中包含10个受试者(5名男性和5个女性)与10个各种尺寸和负担的物体相互作用,包括与手或脚接触。 Intercap总共有223个RGB-D视频,产生了67,357个多视图帧,每个帧包含6个RGB-D图像。我们的方法为每个视频框架提供了伪真正的身体网格和对象。我们的Intercap方法和数据集填补了文献中的重要空白,并支持许多研究方向。我们的数据和代码可用于研究目的。
translated by 谷歌翻译
我们提出了姿势-NDF,这是基于神经距离场(NDFS)的合理人姿势的连续模型。姿势或运动先验对于产生现实的新姿势和重建噪音或部分观察的准确姿势很重要。 Pose-NDF学习了一个合理姿势的多种姿势作为神经隐式函数的零级集合,将3D中隐式表面建模的概念扩展到高维域So(3)^k,其中人姿势由A定义为一个由A定义的。单个数据点,由k四元组表示。所得的高维隐式函数可以相对于输入姿势有区别,因此可以通过在3维超球体的集合上使用梯度下降来将任意姿势投射到歧管上。与以前基于VAE的人姿势先验相反,将姿势空间转化为高斯分布,我们对实际的姿势歧管进行了建模,并保留了姿势之间的距离。我们证明,POSENDF在各种下游任务中的先验胜过现有的最新方法,从降级现实世界的人类MOCAP数据,从遮挡数据恢复到从图像中恢复到3D姿势重建。此外,我们证明它可以用来通过随机抽样和投影来产生更多的姿势,而不是基于VAE的方法。
translated by 谷歌翻译
综合照片 - 现实图像和视频是计算机图形的核心,并且是几十年的研究焦点。传统上,使用渲染算法(如光栅化或射线跟踪)生成场景的合成图像,其将几何形状和材料属性的表示为输入。统称,这些输入定义了实际场景和呈现的内容,并且被称为场景表示(其中场景由一个或多个对象组成)。示例场景表示是具有附带纹理的三角形网格(例如,由艺术家创建),点云(例如,来自深度传感器),体积网格(例如,来自CT扫描)或隐式曲面函数(例如,截短的符号距离)字段)。使用可分辨率渲染损耗的观察结果的这种场景表示的重建被称为逆图形或反向渲染。神经渲染密切相关,并将思想与经典计算机图形和机器学习中的思想相结合,以创建用于合成来自真实观察图像的图像的算法。神经渲染是朝向合成照片现实图像和视频内容的目标的跨越。近年来,我们通过数百个出版物显示了这一领域的巨大进展,这些出版物显示了将被动组件注入渲染管道的不同方式。这种最先进的神经渲染进步的报告侧重于将经典渲染原则与学习的3D场景表示结合的方法,通常现在被称为神经场景表示。这些方法的一个关键优势在于它们是通过设计的3D-一致,使诸如新颖的视点合成捕获场景的应用。除了处理静态场景的方法外,我们还涵盖了用于建模非刚性变形对象的神经场景表示...
translated by 谷歌翻译
控制铰接对象时控制其姿势对于电影虚拟现实或动画等应用至关重要。然而,操纵对象的姿势需要了解其基础结构,即其关节以及它们如何互相互动。不幸的是,假设要知道的结构,因为现有方法所做的,排除了在新的对象类别上工作的能力。我们建议通过观察它们从多个视图移动,没有额外的监督,例如联合注释或有关该结构的信息,从而了解先前看不见的对象的外观和结构。我们的洞察力是,相对于彼此移动的相邻部件必须通过接头连接。为了利用这一观察,我们将3D的物体部分塑造为椭圆体,这使我们能够识别关节。我们将这种明确表示与隐式的表示,该显式表示可以补偿引入的近似值。我们表明我们的方法为不同的结构,从四足动物到单臂机器人到人类工作。
translated by 谷歌翻译