A learned system uses machine learning (ML) internally to improve performance. We can expect such systems to be vulnerable to some adversarial-ML attacks. Often, the learned component is shared between mutually-distrusting users or processes, much like microarchitectural resources such as caches, potentially giving rise to highly-realistic attacker models. However, compared to attacks on other ML-based systems, attackers face a level of indirection as they cannot interact directly with the learned model. Additionally, the difference between the attack surface of learned and non-learned versions of the same system is often subtle. These factors obfuscate the de-facto risks that the incorporation of ML carries. We analyze the root causes of potentially-increased attack surface in learned systems and develop a framework for identifying vulnerabilities that stem from the use of ML. We apply our framework to a broad set of learned systems under active development. To empirically validate the many vulnerabilities surfaced by our framework, we choose 3 of them and implement and evaluate exploits against prominent learned-system instances. We show that the use of ML caused leakage of past queries in a database, enabled a poisoning attack that causes exponential memory blowup in an index structure and crashes it in seconds, and enabled index users to snoop on each others' key distributions by timing queries over their own keys. We find that adversarial ML is a universal threat against learned systems, point to open research gaps in our understanding of learned-systems security, and conclude by discussing mitigations, while noting that data leakage is inherent in systems whose learned component is shared between multiple parties.
translated by 谷歌翻译
边缘计算是一个将数据处理服务转移到生成数据的网络边缘的范式。尽管这样的架构提供了更快的处理和响应,但除其他好处外,它还提出了必须解决的关键安全问题和挑战。本文讨论了从硬件层到系统层的边缘网络体系结构出现的安全威胁和漏洞。我们进一步讨论了此类网络中的隐私和法规合规性挑战。最后,我们认为需要一种整体方法来分析边缘网络安全姿势,该姿势必须考虑每一层的知识。
translated by 谷歌翻译
机器学习中的隐私和安全挑战(ML)已成为ML普遍的开发以及最近对大型攻击表面的展示,已成为一个关键的话题。作为一种成熟的以系统为导向的方法,在学术界和行业中越来越多地使用机密计算来改善各种ML场景的隐私和安全性。在本文中,我们将基于机密计算辅助的ML安全性和隐私技术的发现系统化,以提供i)保密保证和ii)完整性保证。我们进一步确定了关键挑战,并提供有关ML用例现有可信赖的执行环境(TEE)系统中限制的专门分析。我们讨论了潜在的工作,包括基础隐私定义,分区的ML执行,针对ML的专用发球台设计,TEE Awawe Aware ML和ML Full Pipeline保证。这些潜在的解决方案可以帮助实现强大的TEE ML,以保证无需引入计算和系统成本。
translated by 谷歌翻译
由于机器学习(ML)技术和应用正在迅速改变许多计算领域,以及与ML相关的安全问题也在出现。在系统安全领域中,已经进行了许多努力,以确保ML模型和数据机密性。ML计算通常不可避免地在不受信任的环境中执行,并因此需要复杂的多方安全要求。因此,研究人员利用可信任的执行环境(TEES)来构建机密ML计算系统。本文通过在不受信任的环境中分类攻击向量和缓解攻击载体和缓解来进行系统和全面的调查,分析多方ML安全要求,并讨论相关工程挑战。
translated by 谷歌翻译
第五代(5G)网络必须支持数十亿个异质设备,同时保证最佳服务质量(QoS)。这样的要求是不可能单独满足人类努力的,而机器学习(ML)代表了5G中的核心资产。然而,已知ML容易受到对抗例子的影响。此外,正如我们的论文所表明的那样,5G上下文暴露于另一种类型的对抗ML攻击,而现有威胁模型无法正式化。由于缺乏可用于对抗性ML研究的ML供电的5G设备,因此对此类风险的积极评估也有挑战性。为了解决这些问题,我们提出了一种新型的对抗ML威胁模型,该模型特别适合5G场景,不可知ML所解决的精确函数。与现有的ML威胁模型相反,我们的攻击不需要对目标5G系统的任何妥协,同时由于QoS保证和5G网络的开放性质仍然可行。此外,我们为基于公共数据的现实ML安全评估提供了一个原始框架。我们主动评估我们的威胁模型对5G中设想的ML的6个应用。我们的攻击会影响训练和推理阶段,可能会降低最先进的ML系统的性能,并且与以前的攻击相比,进入障碍较低。
translated by 谷歌翻译
尽管早期的经验证据支持了学到的索引结构的案例,因为它们具有有利的平均案例表现,但对其最差的表现知之甚少。相比之下,已知经典结构可以实现最佳的最坏情况行为。这项工作评估了在存在对抗工作量的情况下学习指数结构的鲁棒性。为了模拟对抗性工作负载,我们对线性回归模型进行了数据中毒攻击,该模型操纵了训练学习的索引模型的累积分布函数(CDF)。攻击通过将一组中毒键注入训练数据集,从而恶化了基础ML模型的拟合度,从而导致模型的预测误差增加,从而减少了学习指数结构的整体性能。我们评估了各种回归方法的性能和学习指数实现Alex和PGM索引。我们表明,在对中毒与非毒品数据集进行评估时,学到的指数结构可能会遭受高达20%的显着性能恶化。
translated by 谷歌翻译
Recent years have seen a proliferation of research on adversarial machine learning. Numerous papers demonstrate powerful algorithmic attacks against a wide variety of machine learning (ML) models, and numerous other papers propose defenses that can withstand most attacks. However, abundant real-world evidence suggests that actual attackers use simple tactics to subvert ML-driven systems, and as a result security practitioners have not prioritized adversarial ML defenses. Motivated by the apparent gap between researchers and practitioners, this position paper aims to bridge the two domains. We first present three real-world case studies from which we can glean practical insights unknown or neglected in research. Next we analyze all adversarial ML papers recently published in top security conferences, highlighting positive trends and blind spots. Finally, we state positions on precise and cost-driven threat modeling, collaboration between industry and academia, and reproducible research. We believe that our positions, if adopted, will increase the real-world impact of future endeavours in adversarial ML, bringing both researchers and practitioners closer to their shared goal of improving the security of ML systems.
translated by 谷歌翻译
窃取对受控信息的攻击,以及越来越多的信息泄漏事件,已成为近年来新兴网络安全威胁。由于蓬勃发展和部署先进的分析解决方案,新颖的窃取攻击利用机器学习(ML)算法来实现高成功率并导致大量损坏。检测和捍卫这种攻击是挑战性和紧迫的,因此政府,组织和个人应该非常重视基于ML的窃取攻击。本调查显示了这种新型攻击和相应对策的最新进展。以三类目标受控信息的视角审查了基于ML的窃取攻击,包括受控用户活动,受控ML模型相关信息和受控认证信息。最近的出版物总结了概括了总体攻击方法,并导出了基于ML的窃取攻击的限制和未来方向。此外,提出了从三个方面制定有效保护的对策 - 检测,破坏和隔离。
translated by 谷歌翻译
机器学习(ML)代表了当前和未来信息系统的关键技术,许多域已经利用了ML的功能。但是,网络安全中ML的部署仍处于早期阶段,揭示了研究和实践之间的显着差异。这种差异在当前的最新目的中具有其根本原因,该原因不允许识别ML在网络安全中的作用。除非广泛的受众理解其利弊,否则ML的全部潜力将永远不会释放。本文是对ML在整个网络安全领域中的作用的首次尝试 - 对任何对此主题感兴趣的潜在读者。我们强调了ML在人类驱动的检测方法方面的优势,以及ML在网络安全方面可以解决的其他任务。此外,我们阐明了影响网络安全部署实际ML部署的各种固有问题。最后,我们介绍了各种利益相关者如何为网络安全中ML的未来发展做出贡献,这对于该领域的进一步进步至关重要。我们的贡献补充了两项实际案例研究,这些案例研究描述了ML作为对网络威胁的辩护的工业应用。
translated by 谷歌翻译
Machine learning (ML) models may be deemed confidential due to their sensitive training data, commercial value, or use in security applications. Increasingly often, confidential ML models are being deployed with publicly accessible query interfaces. ML-as-a-service ("predictive analytics") systems are an example: Some allow users to train models on potentially sensitive data and charge others for access on a pay-per-query basis.The tension between model confidentiality and public access motivates our investigation of model extraction attacks. In such attacks, an adversary with black-box access, but no prior knowledge of an ML model's parameters or training data, aims to duplicate the functionality of (i.e., "steal") the model. Unlike in classical learning theory settings, ML-as-a-service offerings may accept partial feature vectors as inputs and include confidence values with predictions. Given these practices, we show simple, efficient attacks that extract target ML models with near-perfect fidelity for popular model classes including logistic regression, neural networks, and decision trees. We demonstrate these attacks against the online services of BigML and Amazon Machine Learning. We further show that the natural countermeasure of omitting confidence values from model outputs still admits potentially harmful model extraction attacks. Our results highlight the need for careful ML model deployment and new model extraction countermeasures.
translated by 谷歌翻译
在模型提取攻击中,对手可以通过反复查询并根据获得的预测来窃取通过公共API暴露的机器学习模型。为了防止模型窃取,现有的防御措施专注于检测恶意查询,截断或扭曲输出,因此必然会为合法用户引入鲁棒性和模型实用程序之间的权衡。取而代之的是,我们建议通过要求用户在阅读模型的预测之前完成工作证明来阻碍模型提取。这可以通过大大增加(甚至高达100倍)来阻止攻击者,以利用查询访问模型提取所需的计算工作。由于我们校准完成每个查询的工作证明所需的努力,因此这仅为常规用户(最多2倍)引入一个轻微的开销。为了实现这一目标,我们的校准应用了来自差异隐私的工具来衡量查询揭示的信息。我们的方法不需要对受害者模型进行任何修改,可以通过机器学习从业人员来应用其公开暴露的模型免于轻易被盗。
translated by 谷歌翻译
机器学习是一个人工智能(AI)的领域,对于几个关键系统来说变得至关重要,使其成为威胁参与者的良好目标。威胁参与者利用不同的策略,技术和程序(TTP),以防止机器学习(ML)系统的机密性,完整性和可用性。在ML周期期间,他们将对抗性TTP利用为毒数据和基于ML ML的系统。近年来,已经为传统系统提出了多种安全惯例,但它们不足以应对基于ML的系统的性质。在本文中,我们对针对基于ML的系统的威胁进行了实证研究,旨在了解和表征ML威胁的性质并确定常见的缓解策略。该研究基于MITER的ATLAS数据库,AI事件数据库和文献的89个现实世界ML攻击方案。从GitHub搜索和Python包装咨询数据库中的854毫升存储库,根据其声誉选择。 AI事件数据库和文献的攻击用于识别Atlas中未记录的漏洞和新类型的威胁。结果表明,卷积神经网络是攻击情景中最有针对性的模型之一。最大漏洞突出的ML存储库包括TensorFlow,OpenCV和笔记本。在本文中,我们还报告了研究的ML存储库中最常见的漏洞,最有针对性的ML阶段和模型,是ML阶段和攻击方案中最常用的TTP。对于红色/蓝色团队,该信息尤其重要,以更好地进行攻击/防御,从业人员在ML开发过程中防止威胁以及研究人员开发有效的防御机制。
translated by 谷歌翻译
随着现代世界中对高度安全和可靠的轻质系统的需求增加,物理上无统治的功能(PUF)继续承诺可轻巧的高成本加密技术和安全钥匙存储。虽然PUF承诺的安全功能对安全系统设计师具有很高的吸引力,但已证明它们容易受到各种复杂攻击的攻击 - 最著名的是基于机器的建模攻击(ML -MA),这些攻击(ML -MA)试图以数字方式克隆PUF行为因此破坏了他们的安全。最新的ML-MA甚至还利用了PUF误差校正所需的公开辅助数据,以预测PUF响应而无需了解响应数据。为此,与传统的PUF储存技术和比较的PUF技术相反,研究开始研究PUF设备的身份验证,并进行了著名的挑战 - 响应对(CRP)的比较。在本文中,我们基于新颖的“ PUF - 表型”概念提出了一个使用ML的分类系统,以准确识别起点并确定得出的噪声记忆(DRAM)PUF响应的有效性作为助手数据依赖数据的Denoisis技术的替代方法。据我们所知,我们是第一个每个模型对多个设备进行分类的人,以实现基于组的PUF身份验证方案。我们使用修改后的深卷积神经网络(CNN)最多达到98 \%的分类精度,并与几个完善的分类器结合使用特征提取。我们还在实验中验证了在Raspberry Pi设备上模型的性能,以确定在资源约束环境中部署我们所提出的模型的适用性。
translated by 谷歌翻译
在对抗机器学习中,防止对深度学习系统的攻击的新防御能力在释放更强大的攻击后不久就会破坏。在这种情况下,法医工具可以通过追溯成功的根本原因来为现有防御措施提供宝贵的补充,并为缓解措施提供前进的途径,以防止将来采取类似的攻击。在本文中,我们描述了我们为开发用于深度神经网络毒物攻击的法医追溯工具的努力。我们提出了一种新型的迭代聚类和修剪解决方案,该解决方案修剪了“无辜”训练样本,直到所有剩余的是一组造成攻击的中毒数据。我们的方法群群训练样本基于它们对模型参数的影响,然后使用有效的数据解读方法来修剪无辜簇。我们从经验上证明了系统对三种类型的肮脏标签(后门)毒物攻击和三种类型的清洁标签毒药攻击的功效,这些毒物跨越了计算机视觉和恶意软件分类。我们的系统在所有攻击中都达到了98.4%的精度和96.8%的召回。我们还表明,我们的系统与专门攻击它的四种抗纤维法措施相对强大。
translated by 谷歌翻译
数字化和远程连接扩大了攻击面,使网络系统更脆弱。由于攻击者变得越来越复杂和资源丰富,仅仅依赖传统网络保护,如入侵检测,防火墙和加密,不足以保护网络系统。网络弹性提供了一种新的安全范式,可以使用弹性机制来补充保护不足。一种网络弹性机制(CRM)适应了已知的或零日威胁和实际威胁和不确定性,并对他们进行战略性地响应,以便在成功攻击时保持网络系统的关键功能。反馈架构在启用CRM的在线感应,推理和致动过程中发挥关键作用。强化学习(RL)是一个重要的工具,对网络弹性的反馈架构构成。它允许CRM提供有限或没有事先知识和攻击者的有限攻击的顺序响应。在这项工作中,我们审查了Cyber​​恢复力的RL的文献,并讨论了对三种主要类型的漏洞,即姿势有关,与信息相关的脆弱性的网络恢复力。我们介绍了三个CRM的应用领域:移动目标防御,防守网络欺骗和辅助人类安全技术。 RL算法也有漏洞。我们解释了RL的三个漏洞和目前的攻击模型,其中攻击者针对环境与代理商之间交换的信息:奖励,国家观察和行动命令。我们展示攻击者可以通过最低攻击努力来欺骗RL代理商学习邪恶的政策。最后,我们讨论了RL为基于RL的CRM的网络安全和恢复力和新兴应用的未来挑战。
translated by 谷歌翻译
A distribution inference attack aims to infer statistical properties of data used to train machine learning models. These attacks are sometimes surprisingly potent, but the factors that impact distribution inference risk are not well understood and demonstrated attacks often rely on strong and unrealistic assumptions such as full knowledge of training environments even in supposedly black-box threat scenarios. To improve understanding of distribution inference risks, we develop a new black-box attack that even outperforms the best known white-box attack in most settings. Using this new attack, we evaluate distribution inference risk while relaxing a variety of assumptions about the adversary's knowledge under black-box access, like known model architectures and label-only access. Finally, we evaluate the effectiveness of previously proposed defenses and introduce new defenses. We find that although noise-based defenses appear to be ineffective, a simple re-sampling defense can be highly effective. Code is available at https://github.com/iamgroot42/dissecting_distribution_inference
translated by 谷歌翻译
互联网连接系统的指数增长产生了许多挑战,例如频谱短缺问题,需要有效的频谱共享(SS)解决方案。复杂和动态的SS系统可以接触不同的潜在安全性和隐私问题,需要保护机制是自适应,可靠和可扩展的。基于机器学习(ML)的方法经常提议解决这些问题。在本文中,我们对最近的基于ML的SS方法,最关键的安全问题和相应的防御机制提供了全面的调查。特别是,我们详细说明了用于提高SS通信系统的性能的最先进的方法,包括基于ML基于ML的基于的数据库辅助SS网络,ML基于基于的数据库辅助SS网络,包括基于ML的数据库辅助的SS网络,基于ML的LTE-U网络,基于ML的环境反向散射网络和其他基于ML的SS解决方案。我们还从物理层和基于ML算法的相应防御策略的安全问题,包括主要用户仿真(PUE)攻击,频谱感测数据伪造(SSDF)攻击,干扰攻击,窃听攻击和隐私问题。最后,还给出了对ML基于ML的开放挑战的广泛讨论。这种全面的审查旨在为探索新出现的ML的潜力提供越来越复杂的SS及其安全问题,提供基础和促进未来的研究。
translated by 谷歌翻译
Online personalized recommendation services are generally hosted in the cloud where users query the cloud-based model to receive recommended input such as merchandise of interest or news feed. State-of-the-art recommendation models rely on sparse and dense features to represent users' profile information and the items they interact with. Although sparse features account for 99% of the total model size, there was not enough attention paid to the potential information leakage through sparse features. These sparse features are employed to track users' behavior, e.g., their click history, object interactions, etc., potentially carrying each user's private information. Sparse features are represented as learned embedding vectors that are stored in large tables, and personalized recommendation is performed by using a specific user's sparse feature to index through the tables. Even with recently-proposed methods that hides the computation happening in the cloud, an attacker in the cloud may be able to still track the access patterns to the embedding tables. This paper explores the private information that may be learned by tracking a recommendation model's sparse feature access patterns. We first characterize the types of attacks that can be carried out on sparse features in recommendation models in an untrusted cloud, followed by a demonstration of how each of these attacks leads to extracting users' private information or tracking users by their behavior over time.
translated by 谷歌翻译
计算能力和大型培训数据集的可用性增加,机器学习的成功助长了。假设它充分代表了在测试时遇到的数据,则使用培训数据来学习新模型或更新现有模型。这种假设受到中毒威胁的挑战,这种攻击会操纵训练数据,以损害模型在测试时的表现。尽管中毒已被认为是行业应用中的相关威胁,到目前为止,已经提出了各种不同的攻击和防御措施,但对该领域的完整系统化和批判性审查仍然缺失。在这项调查中,我们在机器学习中提供了中毒攻击和防御措施的全面系统化,审查了过去15年中该领域发表的100多篇论文。我们首先对当前的威胁模型和攻击进行分类,然后相应地组织现有防御。虽然我们主要关注计算机视觉应用程序,但我们认为我们的系统化还包括其他数据模式的最新攻击和防御。最后,我们讨论了中毒研究的现有资源,并阐明了当前的局限性和该研究领域的开放研究问题。
translated by 谷歌翻译
背景信息:在过去几年中,机器学习(ML)一直是许多创新的核心。然而,包括在所谓的“安全关键”系统中,例如汽车或航空的系统已经被证明是非常具有挑战性的,因为ML的范式转变为ML带来完全改变传统认证方法。目的:本文旨在阐明与ML为基础的安全关键系统认证有关的挑战,以及文献中提出的解决方案,以解决它们,回答问题的问题如何证明基于机器学习的安全关键系统?'方法:我们开展2015年至2020年至2020年之间发布的研究论文的系统文献综述(SLR),涵盖了与ML系统认证有关的主题。总共确定了217篇论文涵盖了主题,被认为是ML认证的主要支柱:鲁棒性,不确定性,解释性,验证,安全强化学习和直接认证。我们分析了每个子场的主要趋势和问题,并提取了提取的论文的总结。结果:单反结果突出了社区对该主题的热情,以及在数据集和模型类型方面缺乏多样性。它还强调需要进一步发展学术界和行业之间的联系,以加深域名研究。最后,它还说明了必须在上面提到的主要支柱之间建立连接的必要性,这些主要柱主要主要研究。结论:我们强调了目前部署的努力,以实现ML基于ML的软件系统,并讨论了一些未来的研究方向。
translated by 谷歌翻译