磁共振(MR)图像重建来自高度缺点$ K $ -space数据在加速MR成像(MRI)技术中至关重要。近年来,基于深度学习的方法在这项任务中表现出很大的潜力。本文提出了一种学习的MR图像重建半二次分割算法,并在展开的深度学习网络架构中实现算法。我们比较我们提出的方法对针对DC-CNN和LPDNET的公共心先生数据集的性能,我们的方法在定量结果和定性结果中表现出其他方法,具有更少的模型参数和更快的重建速度。最后,我们扩大了我们的模型,实现了卓越的重建质量,并且改善为1.76美元$ 276 $ 274美元的LPDNET以5美元\倍率为5美元的峰值信噪比。我们的方法的代码在https://github.com/hellopipu/hqs-net上公开使用。
translated by 谷歌翻译
The data consistency for the physical forward model is crucial in inverse problems, especially in MR imaging reconstruction. The standard way is to unroll an iterative algorithm into a neural network with a forward model embedded. The forward model always changes in clinical practice, so the learning component's entanglement with the forward model makes the reconstruction hard to generalize. The proposed method is more generalizable for different MR acquisition settings by separating the forward model from the deep learning component. The deep learning-based proximal gradient descent was proposed to create a learned regularization term independent of the forward model. We applied the one-time trained regularization term to different MR acquisition settings to validate the proposed method and compared the reconstruction with the commonly used $\ell_1$ regularization. We showed ~3 dB improvement in the peak signal to noise ratio, compared with conventional $\ell_1$ regularized reconstruction. We demonstrated the flexibility of the proposed method in choosing different undersampling patterns. We also evaluated the effect of parameter tuning for the deep learning regularization.
translated by 谷歌翻译
可解释性和鲁棒性必须在临床应用中整合加速磁共振成像(MRI)重建的机器学习方法。这样做会允许快速高质量的解剖和病理学成像。数据一致性(DC)对于多模态数据的泛化至关重要,以及检测病理学的鲁棒性。这项工作提出了独立复发推理机(CIRIM)的级联,通过展开优化来评估DC,通过梯度下降,并通过设计的术语明确地明确。我们对CIRIM与其他展开的优化方法进行广泛的比较,是端到端变分网络(E2EVN)和轮辋,以及UNET和压缩感测(CS)。评估是分两个阶段完成的。首先,评估关于多次训练的MRI模型的学习,即用{t_1} $ - 加权和平凡对比,以及$ {t_2} $ - 加权膝盖数据。其次,在通过3D Flair MRI数据中重建依赖多发性硬化(MS)患者的3D Flair MRI数据来测试鲁棒性。结果表明,CIRIM在隐式强制执行DC时表现最佳,而E2EVN需要明确制定的DC。 CIRIM在重建临床MS数据时显示出最高病变对比度分辨率。与CS相比,性能提高了大约11%,而重建时间是二十次减少。
translated by 谷歌翻译
深度学习网络在快速磁共振成像(MRI)重建中显示出令人鼓舞的结果。在我们的工作中,我们开发了深层网络,以进一步提高重建的定量和感知质量。首先,我们提出了Reconsynergynet(RSN),该网络结合了在图像和傅立叶域上独立运行的互补益处。对于单线采集,我们引入了深层级联RSN(DC-RSN),这是一个与数据保真度(DF)单位交织在一起的RSN块的级联。其次,我们通过协助T1加权成像(T1WI)的帮助,这是T2加权成像(T2WI)的DC-RSN的结构恢复,这是一个短时间采集时间的序列。通过日志功能(高尔夫)融合的梯度为DC-RSN提供T1援助。此外,我们建议感知改进网络(PRN)来完善重建以获得更好的视觉信息保真度(VIF),这是一种与放射科医生对图像质量高度相关的指标。最后,对于多线圈采集,我们提出了可变拆分RSN(VS-RSN),深层块,每个块,包含RSN,多圈DF单元和加权平均模块。我们广泛验证了单线和多线圈采集的模型DC-RSN和VS-RSN,并报告最先进的性能。我们在FastMRI中获得了0.768、0.923、0.878的SSIM,单线圈-4X,多螺旋-4X和多型圈-8X的SSIM为0.878。我们还进行了实验,以证明基于高尔夫的T1援助和PRN的功效。
translated by 谷歌翻译
在过去的几年中,提出了多种基于深神经网络(DNN)的方法,以解决来自未取消采样的“ K-Space”(傅立叶域)数据的挑战性不足的反向问题。然而,反对采集过程中的变化和解剖学分布的不稳定性表明,与其经典的对应物相比,DNN体系结构对相关物理模型的概括不佳。较差的概括有效地排除了DNN适用于临床环境中不足采样的MRI重建。我们通过引入物理培养的DNN体系结构和培训方法来提高DNN方法的泛化MRI重建能力。除了模型体系结构中观察到的数据外,我们的体系结构还编码底面采样掩码,并采用适当的培训方法,该方法使用与各种无底采样掩码生成的数据一起鼓励模型概括了未散布的MRI重建问题。我们通过对公开可用的快速MRI数据集进行了广泛的实验,证明了我们的方法的附加价值。我们的物理提出的方法达到了增强的概括能力,这使得与获得的稳健性和解剖学分布的变化相比,尤其是在病理区域中,与香草DNN方法和DNN进行了显着提高,并在病理区域中进行了显着提高,并且受过培训的DNN训练,并接受了强烈的掩盖掩模的增强。接受训练的模型和代码以复制我们的实验,将在接受后用于研究目的。
translated by 谷歌翻译
基于卷积神经网络的MR重建方法已经显示出提供快速和高质量的重建。具有基于CNN的模型的主要缺点是它缺乏灵活性,并且可以仅针对特定采集上下文限制实际适用性有效运行。通过获取上下文,我们的意思是三个输入设置的特定组合,即所认为的三种输入,在研究中的解剖学,欠采样掩模图案和欠采样的加速度。该模型可以在组合多个上下文的图像上共同培训。然而,该模型不符合上下文特定模型的性能,也不符合在火车时间内看不见的上下文。这需要在生成上下文特定权重时修改现有体系结构,以便将灵活性合并到多个上下文。我们提出了一个多次采集的上下文基础网络,称为MAC-Recordnet,用于MRI重建,灵活地到多个获取上下文,并更广泛地概括为在实际方案中适用性的未操作性上下文。所提出的网络具有MRI重建模块和动态重量预测(DWP)模块。 DWP模块将相应的获取上下文信息作为输入,并学习重建模块的上下文专用权重,在运行时使用上下文动态变化。我们表明,所提出的方法可以根据心脏和大脑数据集,高斯和笛卡尔欠采样模式和五个加速因子处理多个上下文。所提出的网络优于Naive联合训练的模型,并通过定量和定性地具有与上下文专用模型具有竞争力的结果。我们还通过在火车时间看不见的背景下测试了我们模型的普遍性。
translated by 谷歌翻译
Dynamic magnetic resonance image reconstruction from incomplete k-space data has generated great research interest due to its capability to reduce scan time. Never-theless, the reconstruction problem is still challenging due to its ill-posed nature. Recently, diffusion models espe-cially score-based generative models have exhibited great potential in algorithm robustness and usage flexi-bility. Moreover, the unified framework through the variance exploding stochastic differential equation (VE-SDE) is proposed to enable new sampling methods and further extend the capabilities of score-based gener-ative models. Therefore, by taking advantage of the uni-fied framework, we proposed a k-space and image Du-al-Domain collaborative Universal Generative Model (DD-UGM) which combines the score-based prior with low-rank regularization penalty to reconstruct highly under-sampled measurements. More precisely, we extract prior components from both image and k-space domains via a universal generative model and adaptively handle these prior components for faster processing while maintaining good generation quality. Experimental comparisons demonstrated the noise reduction and detail preservation abilities of the proposed method. Much more than that, DD-UGM can reconstruct data of differ-ent frames by only training a single frame image, which reflects the flexibility of the proposed model.
translated by 谷歌翻译
最近,对深度学习进行了广泛的研究,以加速动态磁共振(MR)成像,并取得了令人鼓舞的进步。但是,如果没有完全采样的参考数据进行培训,当前方法可能在恢复细节或结构方面具有有限的能力。为了应对这一挑战,本文提出了一个自我监督的协作学习框架(SelfCollearn),以从无效的K-Space数据中进行准确的动态MR图像重建。拟议的框架配备了三个重要组成部分,即双网络协作学习,重新启动数据增强和专门设计的共同培训损失。该框架可以灵活地与数据驱动的网络和基于模型的迭代未滚动网络集成。我们的方法已在体内数据集上进行了评估,并将其与四种最新方法进行了比较。结果表明,我们的方法具有很强的能力,可以从无效的K空间数据捕获直接重建的基本和固有表示形式,因此可以实现高质量且快速的动态MR成像。
translated by 谷歌翻译
目的:并行成像通过用一系列接收器线圈获取其他灵敏度信息,从而加速了磁共振成像(MRI)数据,从而降低了相位编码步骤。压缩传感磁共振成像(CS-MRI)在医学成像领域中获得了普及,因为其数据要求较少,而不是平行成像。并行成像和压缩传感(CS)均通过最大程度地减少K空间中捕获的数据量来加快传统MRI获取。由于采集时间与样品的数量成反比,因此从缩短的K空间样品中的图像的反向形成会导致收购更快,但具有混乱的伪像。本文提出了一种新型的生成对抗网络(GAN),即雷德格尔(Recgan-gr)受到多模式损失的监督,以消除重建的图像。方法:与现有的GAN网络相反,我们提出的方法引入了一种新型的发电机网络,即与双域损耗函数集成的弹药网络,包括加权幅度和相位损耗函数以及基于平行成像的损失,即Grappa一致性损失。提出了K空间校正块,以使GAN网络自动化生成不必要的数据,从而使重建过程的收敛性更快。结果:全面的结果表明,拟议的Recgan-GR在基于GAN的方法中的PSNR有4 dB的改善,并且在文献中可用的传统最先进的CNN方法中有2 dB的改进。结论和意义:拟议的工作有助于显着改善低保留数据的图像质量,从而更快地获取了5倍或10倍。
translated by 谷歌翻译
深度学习方法已成功用于各种计算机视觉任务。受到成功的启发,已经在磁共振成像(MRI)重建中探索了深度学习。特别是,整合深度学习和基于模型的优化方法已显示出很大的优势。但是,对于高重建质量,通常需要大量标记的培训数据,这对于某些MRI应用来说是具有挑战性的。在本文中,我们提出了一种名为DUREN-NET的新型重建方法,该方法可以通过组合无监督的DeNoising网络和插件方法来为MR图像重建提供可解释的无监督学习。我们的目标是通过添加明确的先验利用成像物理学来提高无监督学习的重建性能。具体而言,使用denoising(红色)正规化实现了MRI重建网络的杠杆作用。实验结果表明,所提出的方法需要减少训练数据的数量才能达到高重建质量。
translated by 谷歌翻译
将优化算法映射到神经网络中,深度展开的网络(DUNS)在压缩传感(CS)方面取得了令人印象深刻的成功。从优化的角度来看,Duns从迭代步骤中继承了一个明确且可解释的结构。但是,从神经网络设计的角度来看,大多数现有的Dun是基于传统图像域展开而固有地建立的,该图像域的展开将一通道图像作为相邻阶段之间的输入和输出,从而导致信息传输能力不足,并且不可避免地会损失图像。细节。在本文中,为了打破上述瓶颈,我们首先提出了一个广义的双域优化框架,该框架是逆成像的一般性,并将(1)图像域和(2)卷积编码域先验的优点整合到限制解决方案空间中的可行区域。通过将所提出的框架展开到深神经网络中,我们进一步设计了一种新型的双域深卷积编码网络(D3C2-NET),用于CS成像,具有通过所有展开的阶段传输高通量特征级图像表示的能力。关于自然图像和MR图像的实验表明,与其他最先进的艺术相比,我们的D3C2-NET实现更高的性能和更好的准确性权衡权衡。
translated by 谷歌翻译
磁共振成像可以产生人体解剖和生理学的详细图像,可以帮助医生诊断和治疗肿瘤等病理。然而,MRI遭受了非常长的收购时间,使其易于患者运动伪影并限制其潜力以提供动态治疗。诸如并行成像和压缩感测的常规方法允许通过使用多个接收器线圈获取更少的MRI数据来改变MR图像来增加MRI采集速度。深度学习的最新进步与平行成像和压缩传感技术相结合,具有从高度加速的MRI数据产生高保真重建。在这项工作中,我们通过利用卷积复发网络的特性和展开算法来解决复发变分网络(RevurrentVarnet)的加速改变网络(RevurrentVarnet)的任务,提出了一种基于深入的深度学习的反问题解决者。 RevurrentVarnet由多个块组成,每个块都负责梯度下降优化算法的一个展开迭代,以解决逆问题。与传统方法相反,优化步骤在观察域($ k $ -space)而不是图像域中进行。每次反复出的Varnet块都会通过观察到的$ k $ -space,并由数据一致性术语和复制单元组成,它将作为输入的隐藏状态和前一个块的预测。我们所提出的方法实现了新的最新状态,定性和定量重建导致来自公共多通道脑数据集的5倍和10倍加速数据,优于以前的传统和基于深度学习的方法。我们将在公共存储库上释放所有型号代码和基线。
translated by 谷歌翻译
压缩传感(CS)一直在加速磁共振成像(MRI)采集过程中的关键作用。随着人工智能的复苏,深神经网络和CS算法正在集成以重新定义快速MRI的领域。过去几年目睹了基于深度学习的CS技术的复杂性,多样性和表现的大量增长,这些技术致力于快速MRI。在该荟萃分析中,我们系统地审查了快速MRI的深度学习的CS技术,描述了关键模型设计,突出突破,并讨论了有希望的方向。我们还介绍了一个综合分析框架和分类系统,以评估深度学习在基于CS的加速度的MRI的关键作用。
translated by 谷歌翻译
展开的神经网络最近实现了最先进的MRI重建。这些网络通过在基于物理的一致性和基于神经网络的正则化之间交替来展开迭代优化算法。但是,它们需要大型神经网络的几次迭代来处理高维成像任务,例如3D MRI。这限制了基于反向传播的传统训练算法,这是由于较大的记忆力和计算梯度和存储中间激活的计算要求。为了应对这一挑战,我们提出了加速MRI(GLEAM)重建的贪婪学习,这是一种高维成像设置的有效培训策略。 GLEAM将端到端网络拆分为脱钩的网络模块。每个模块都以贪婪的方式优化,并通过脱钩的梯度更新,从而减少了训练过程中的内存足迹。我们表明,可以在多个图形处理单元(GPU)上并行执行解耦梯度更新,以进一步减少训练时间。我们介绍了2D和3D数据集的实验,包括多线圈膝,大脑和动态心脏Cine MRI。我们观察到:i)闪闪发光的概括以及最先进的记忆效率基线,例如具有相同内存足迹的梯度检查点和可逆网络,但训练速度更快1.3倍; ii)对于相同的内存足迹,闪光在2D中产生1.1dB PSNR的增益,而3D在端到端基线中产生1.8 dB。
translated by 谷歌翻译
Supervised Deep-Learning (DL)-based reconstruction algorithms have shown state-of-the-art results for highly-undersampled dynamic Magnetic Resonance Imaging (MRI) reconstruction. However, the requirement of excessive high-quality ground-truth data hinders their applications due to the generalization problem. Recently, Implicit Neural Representation (INR) has appeared as a powerful DL-based tool for solving the inverse problem by characterizing the attributes of a signal as a continuous function of corresponding coordinates in an unsupervised manner. In this work, we proposed an INR-based method to improve dynamic MRI reconstruction from highly undersampled k-space data, which only takes spatiotemporal coordinates as inputs. Specifically, the proposed INR represents the dynamic MRI images as an implicit function and encodes them into neural networks. The weights of the network are learned from sparsely-acquired (k, t)-space data itself only, without external training datasets or prior images. Benefiting from the strong implicit continuity regularization of INR together with explicit regularization for low-rankness and sparsity, our proposed method outperforms the compared scan-specific methods at various acceleration factors. E.g., experiments on retrospective cardiac cine datasets show an improvement of 5.5 ~ 7.1 dB in PSNR for extremely high accelerations (up to 41.6-fold). The high-quality and inner continuity of the images provided by INR has great potential to further improve the spatiotemporal resolution of dynamic MRI, without the need of any training data.
translated by 谷歌翻译
减少磁共振(MR)图像采集时间可能会使MR检查更容易获得。包括深度学习模型在内的先前艺术已致力于解决长期MRI成像时间的问题。最近,深层生成模型在算法鲁棒性和使用灵活性方面具有巨大的潜力。然而,无法直接学习或使用任何现有方案。此外,还值得研究的是,深层生成模型如何在混合域上很好地工作。在这项工作中,通过利用基于深度能量的模型,我们提出了一个K空间和图像域协作生成模型,以全面估算从采样量未采样的测量中的MR数据。与最先进的实验比较表明,所提出的混合方法的重建精度较小,在不同的加速因子下更稳定。
translated by 谷歌翻译
由于组织和骨骼之间的相似性,在人解剖结构中广泛看到了全球相关性。由于近距离质子密度和T1/T2参数,这些相关性反映在磁共振成像(MRI)扫描中。此外,为了实现加速的MRI,k空间数据的采样不足,从而导致全球混叠伪像。卷积神经网络(CNN)模型被广泛用于加速MRI重建,但是由于卷积操作的固有位置,这些模型在捕获全球相关性方面受到限制。基于自发的变压器模型能够捕获图像特征之间的全局相关性,但是,变压器模型对MRI重建的当前贡献是微小的。现有的贡献主要提供CNN转换器混合解决方案,并且很少利用MRI的物理学。在本文中,我们提出了一种基于物理的独立(无卷积)变压器模型,标题为“多头级联SWIN变压器(MCSTRA),用于加速MRI重建。 MCSTRA将几种相互关联的MRI物理相关概念与变压器网络相结合:它通过移动的窗口自我发场机制利用了全局MR特征;它使用多头设置分别提取属于不同光谱组件的MR特征;它通过级联的网络在中间脱氧和K空间校正之间进行迭代,该网络具有K空间和中间损耗计算中的数据一致性;此外,我们提出了一种新型的位置嵌入生成机制,以使用对应于底面采样掩码的点扩散函数来指导自我发作。我们的模型在视觉上和定量上都大大优于最先进的MRI重建方法,同时描述了改善的分辨率和去除词法。
translated by 谷歌翻译
近年来,基于深度学习的平行成像(PI)取得了巨大进展,以加速磁共振成像(MRI)。然而,现有方法的性能和鲁棒性仍然可以是不受欢迎的。在这项工作中,我们建议通过柔性PI重建,创建的重量K-Space Genera-Tive模型(WKGM)来探索K空间域学习。具体而言,WKGM是一种通用的K空间域模型,在其中有效地纳入了K空间加权技术和高维空间增强设计,用于基于得分的Genererative模型训练,从而实现良好和强大的重建。此外,WKGM具有灵活性,因此可以与各种传统的K空间PI模型协同结合,从而产生基于学习的先验以产生高保真重建。在具有不同采样模式和交流电因子的数据集上进行实验性重新构建表明,WKGM可以通过先验良好的K-Space生成剂获得最新的重建结果。
translated by 谷歌翻译
磁共振成像(MRI)在临床中很重要,可以产生高分辨率图像进行诊断,但其获取时间很长,对于高分辨率图像。基于深度学习的MRI超级分辨率方法可以减少扫描时间而无需复杂的序列编程,但由于训练数据和测试数据之间的差异,可能会产生其他伪像。数据一致性层可以改善深度学习结果,但需要原始的K空间数据。在这项工作中,我们提出了基于幅度图像的数据一致性深度学习MRI超级分辨率方法,以提高超级分辨率图像的质量,而无需原始K空间数据。我们的实验表明,与没有数据一致性模块的同一卷积神经网络(CNN)块相比,提出的方法可以改善超级分辨率图像的NRMSE和SSIM。
translated by 谷歌翻译
磁共振成像(MRI)是重要的医学成像模型,而需要长时间的采集时间。为了减少采集​​时间,已经提出了各种方法。然而,这些方法未能以明确的结构重建图像,以两种主要原因。首先,在MR图像中广泛存在的类似补丁,而最先前的基于深度学习的方法忽略此属性,并且仅采用CNN学习本地信息。其次,现有方法仅使用清晰的图像来限制解决方案空间的上限,而下限不会受约束,从而无法获得网络的更好参数。为了解决这些问题,我们向本地和全球学习MRI重建网络(CLGNET)提出了对比的学习。具体地,根据傅立叶理论,傅里叶域中的每个值由空间域中的所有值计算。因此,我们提出了一种空间和傅里叶层(SFL),以同时学习空间和傅立叶域中的本地和全局信息。此外,与自我关注和变压器相比,SFL具有更强的学习能力,可以在更短的时间内实现更好的性能。基于SFL,我们设计了一个空间和傅里叶的剩余块作为模型的主要组成部分。同时,要限制解决方案空间的下限和上限,我们引入了对比度学习,这可以将结果拉到清晰图像上,并将结果推到远离下采样的图像。不同数据集和加速率的广泛实验结果表明,所提出的CLGNET实现了新的最先进的结果。
translated by 谷歌翻译