在回答问题时,人类会利用跨不同模式可用的信息来综合一致,完整的思想链(COT)。在深度学习模型(例如大规模语言模型)的情况下,这个过程通常是黑匣子。最近,科学问题基准已用于诊断AI系统的多跳推理能力和解释性。但是,现有数据集无法为答案提供注释,或仅限于仅文本模式,小尺度和有限的域多样性。为此,我们介绍了科学问题答案(SQA),这是一个新的基准,由〜21k的多模式多种选择问题组成,其中包含各种科学主题和答案的注释,并提供相应的讲座和解释。我们进一步设计语言模型,以学习将讲座和解释作为思想链(COT),以模仿回答SQA问题时的多跳上推理过程。 SQA在语言模型中展示了COT的实用性,因为COT将问题的答案绩效提高了1.20%的GPT-3和3.99%的unifiedqa。我们还探索了模型的上限,以通过喂食输入中的那些来利用解释;我们观察到它将GPT-3的少量性能提高了18.96%。我们的分析进一步表明,与人类类似的语言模型受益于解释,从较少的数据中学习并仅使用40%的数据实现相同的性能。
translated by 谷歌翻译
数学推理是人类智力的核心能力,在抽象思维和逻辑推理中对机器提出了独特的挑战。最近的大型预训练的语言模型(例如GPT-3)在以文本形式(例如数学单词问题(MWP))编写的数学推理任务上取得了显着的进步。但是,未知模型是否可以处理更复杂的问题,这些问题涉及数学推理,例如表格数据。为了填补空白,我们提出了表格数学单词问题(TABMWP),这是一个包含38,431个开放域级等级问题的新数据集,这些问题需要在文本和表格数据上进行数学推理。 TABMWP中的每个问题都与表格上下文对齐,该上下文作为图像,半结构化文本和结构化表。有两种类型的问题:自由文本和多选择,每个问题都用金解决方案注释以揭示多步推理过程。我们在TABMWP上评估了不同的预训练模型,包括在几次设置中的GPT-3模型。正如先前的研究所表明的那样,由于很少有GPT-3依赖于内在的示例的选择,因此其性能是不稳定的,并且可能会降解为几乎机会。处理TABMWP等复杂问题时,不稳定的问题更为严重。为了减轻这种情况,我们进一步提出了一种新颖的方法,即PresspG,该方法利用策略梯度学习从少量培训数据中选择中文示例,然后为测试示例构造相应的提示。实验结果表明,与随机选择相比,我们的方法在准确性度量上优于最佳基线,并显着降低了预测方差,这验证了其在选择性上下文示例中的有效性。
translated by 谷歌翻译
目前的视觉问题应答(VQA)任务主要考虑回答自然图像的人为注释问题。然而,除了自然图像之外,在视觉理解和推理研究中仍然可以解读具有语义丰富性的抽象图。在这项工作中,我们介绍了ICON问题的新挑战(ICONQA),其目标是在图标图像上下文中回答问题。我们发布了ICONQA,这是一个由107,439个问题和三个子任务组成的大型数据集:多图像选择,多文本选择和填充空白。 ICONQA数据集是由真实世界图中的启发,突出了抽象图理解和综合认知推理的重要性。因此,ICONQA不仅需要对象识别和文本理解等感知技能,而且还需要多种认知推理技能,例如几何推理,致辞推理和算术推理。为了促进潜在的iconqa模型来学习图标图像的语义表示,我们进一步发布了一个图标数据集图标645,其中包含377级上的645,687个彩色图标。我们进行广泛的用户研究和盲目实验,并重现各种先进的VQA方法来基准iconQA任务。此外,我们开发了一个强大的ICONQA基线Patch-TRM,它应用金字塔跨模型变压器,其中包含在图标数据集上预先培训的输入图嵌入式。 iconqa和图标645可在https://iconqa.github.io提供。
translated by 谷歌翻译
从预训练的语言模型中进行的引导已被证明是用于建立基础视觉模型(VLM)的有效方法,例如图像字幕或视觉问题的答案。但是,很难用它来使模型符合用户的理由来获得特定答案。为了引起和加强常识性原因,我们提出了一个迭代采样和调整范式,称为Illume,执行以下循环:给定图像问题提示提示,VLM采样了多个候选人,并通过人类评论家通过偏好提供最小的反馈。选择,用于微调。该循环增加了训练数据,并逐渐雕刻出VLM的合理化功能。我们的详尽实验表明,Illume在使用较少的培训数据的同时,仅需要最少的反馈,与标准监督的微调竞争。
translated by 谷歌翻译
基础模型由于在广泛的下游应用中的有效性而受到了很多关注。尽管在体系结构方面存在很大的融合,但大多数审慎的模型通常仍用于特定任务或模式。在这项工作中,我们建议将语言模型用作各种基础模型的通用接口。一系列预处理的编码者感知到了多种方式(例如视觉和语言),并与扮演通用任务层角色的语言模型对接。我们提出了一个半伴侣的语言建模目标,以共同确定界面和模块化编码器。我们从因果关系和非因果建模中涵盖了优势和能力,从而结合了两个世界的最佳状态。具体而言,所提出的方法不仅从因果语言建模中继承了内在学习和开放式生成的能力,而且由于双向编码器而有利于填补。更重要的是,我们的方法无缝地解锁了上述功能的组合,例如,通过填充编码器启用了文本学习或指导。各种仅语言和视觉语言基准的实验结果表明,我们的模型表现优于或与鉴定,零弹性概括和几乎没有的学习的专业模型竞争。
translated by 谷歌翻译
为了实现长文档理解的构建和测试模型,我们引入质量,具有中文段的多项选择QA DataSet,具有约5,000个令牌的平均长度,比典型的当前模型更长。与经过段落的事先工作不同,我们的问题是由阅读整个段落的贡献者编写和验证的,而不是依赖摘要或摘录。此外,只有一半的问题是通过在紧缩时间限制下工作的注释器来应答,表明略读和简单的搜索不足以一直表现良好。目前的模型在此任务上表现不佳(55.4%),并且落后于人类性能(93.5%)。
translated by 谷歌翻译
As large language models (LLMs) grow larger and more sophisticated, assessing their "reasoning" capabilities in natural language grows more challenging. Recent question answering (QA) benchmarks that attempt to assess reasoning are often limited by a narrow scope of covered situations and subject matters. We introduce WikiWhy, a QA dataset built around a novel auxiliary task: explaining why an answer is true in natural language. WikiWhy contains over 9,000 "why" question-answer-rationale triples, grounded on Wikipedia facts across a diverse set of topics. Each rationale is a set of supporting statements connecting the question to the answer. WikiWhy serves as a benchmark for the reasoning capabilities of LLMs because it demands rigorous explicit rationales for each answer to demonstrate the acquisition of implicit commonsense knowledge, which is unlikely to be easily memorized. GPT-3 baselines achieve only 38.7% human-evaluated correctness in the end-to-end answer & explain condition, leaving significant room for future improvements.
translated by 谷歌翻译
我们探索如何产生一系列思想 - 一系列中间推理步骤 - 显着提高了大语言模型执行复杂推理的能力。特别是,我们通过一种称为“思想链”提示的简单方法在足够大的语言模型中自然出现这种推理能力,在此过程中,一些思想示范被作为提示的示例提供了。三种大语模型的实验表明,促使思想链提高了一系列算术,常识和象征性推理任务的性能。经验收益可能会引人注目。例如,仅使用八个思想范围的540B参数语言模型才能在数学单词问题的GSM8K基准上实现最新的精度,甚至超过了带有验证器的Fineted GPT-3。
translated by 谷歌翻译
Large language models (LLMs) have demonstrated impressive capabilities in natural language understanding and generation, but the quality bar for medical and clinical applications is high. Today, attempts to assess models' clinical knowledge typically rely on automated evaluations on limited benchmarks. There is no standard to evaluate model predictions and reasoning across a breadth of tasks. To address this, we present MultiMedQA, a benchmark combining six existing open question answering datasets spanning professional medical exams, research, and consumer queries; and HealthSearchQA, a new free-response dataset of medical questions searched online. We propose a framework for human evaluation of model answers along multiple axes including factuality, precision, possible harm, and bias. In addition, we evaluate PaLM (a 540-billion parameter LLM) and its instruction-tuned variant, Flan-PaLM, on MultiMedQA. Using a combination of prompting strategies, Flan-PaLM achieves state-of-the-art accuracy on every MultiMedQA multiple-choice dataset (MedQA, MedMCQA, PubMedQA, MMLU clinical topics), including 67.6% accuracy on MedQA (US Medical License Exam questions), surpassing prior state-of-the-art by over 17%. However, human evaluation reveals key gaps in Flan-PaLM responses. To resolve this we introduce instruction prompt tuning, a parameter-efficient approach for aligning LLMs to new domains using a few exemplars. The resulting model, Med-PaLM, performs encouragingly, but remains inferior to clinicians. We show that comprehension, recall of knowledge, and medical reasoning improve with model scale and instruction prompt tuning, suggesting the potential utility of LLMs in medicine. Our human evaluations reveal important limitations of today's models, reinforcing the importance of both evaluation frameworks and method development in creating safe, helpful LLM models for clinical applications.
translated by 谷歌翻译
Visual understanding goes well beyond object recognition. With one glance at an image, we can effortlessly imagine the world beyond the pixels: for instance, we can infer people's actions, goals, and mental states. While this task is easy for humans, it is tremendously difficult for today's vision systems, requiring higher-order cognition and commonsense reasoning about the world. We formalize this task as Visual Commonsense Reasoning. Given a challenging question about an image, a machine must answer correctly and then provide a rationale justifying its answer.Next, we introduce a new dataset, VCR, consisting of 290k multiple choice QA problems derived from 110k movie scenes. The key recipe for generating non-trivial and highquality problems at scale is Adversarial Matching, a new approach to transform rich annotations into multiple choice questions with minimal bias. Experimental results show that while humans find VCR easy (over 90% accuracy), state-of-the-art vision models struggle (∼45%).To move towards cognition-level understanding, we present a new reasoning engine, Recognition to Cognition Networks (R2C), that models the necessary layered inferences for grounding, contextualization, and reasoning. R2C helps narrow the gap between humans and machines (∼65%); still, the challenge is far from solved, and we provide analysis that suggests avenues for future work.
translated by 谷歌翻译
Natural language explanations promise to offer intuitively understandable explanations of a neural network's decision process in complex vision-language tasks, as pursued in recent VL-NLE models. While current models offer impressive performance on task accuracy and explanation plausibility, they suffer from a range of issues: Some models feature a modular design where the explanation generation module is poorly integrated with a separate module for task-answer prediction, employ backbone models trained on limited sets of tasks, or incorporate ad hoc solutions to increase performance on single datasets. We propose to evade these limitations by applying recent advances in large-scale multi-task pretraining of generative Transformer models to the problem of VL-NLE tasks. Our approach outperforms recent models by a large margin, with human annotators preferring the generated explanations over the ground truth in two out of three evaluated datasets. As a novel challenge in VL-NLE research, we propose the problem of multi-task VL-NLE and show that jointly training on multiple tasks can increase the explanation quality. We discuss the ethical implications of high-quality NLE generation and other issues in recent VL-NLE research.
translated by 谷歌翻译
Instruction tuning, a new learning paradigm that fine-tunes pre-trained language models on tasks specified through instructions, has shown promising zero-shot performance on various natural language processing tasks. However, it's still not explored for vision and multimodal tasks. In this work, we introduce MultiInstruct, the first multimodal instruction tuning benchmark dataset that consists of 47 diverse multimodal tasks covering 11 broad categories. Each task is designed at least with 5,000 instances (input-out pairs) from existing open-source datasets and 5 expert-written instructions. We take OFA as the base pre-trained model for multimodal instruction tuning, and to improve its performance, we explore multiple transfer learning strategies to leverage the large-scale Natural Instructions dataset. Experimental results demonstrate its strong zero-shot performance on various unseen multimodal tasks and the benefit of transfer learning from text-only instructions. We also design a new evaluation metric: Sensitivity, to evaluate how sensitive the model is to the variety of instructions. Our results indicate that the model is less sensitive to the varying instructions after finetuning on a diverse set of tasks and instructions for each task.
translated by 谷歌翻译
Mathematical reasoning is a fundamental aspect of human intelligence and is applicable in various fields, including science, engineering, finance, and everyday life. The development of artificial intelligence (AI) systems capable of solving math problems and proving theorems has garnered significant interest in the fields of machine learning and natural language processing. For example, mathematics serves as a testbed for aspects of reasoning that are challenging for powerful deep learning models, driving new algorithmic and modeling advances. On the other hand, recent advances in large-scale neural language models have opened up new benchmarks and opportunities to use deep learning for mathematical reasoning. In this survey paper, we review the key tasks, datasets, and methods at the intersection of mathematical reasoning and deep learning over the past decade. We also evaluate existing benchmarks and methods, and discuss future research directions in this domain.
translated by 谷歌翻译
大型语言模型越来越能够通过相对较少的特定任务的监督产生流畅的出现文本。但这些模型可以准确解释分类决策吗?我们考虑使用少量人写的例子(即,以几滴方式)生成自由文本解释的任务。我们发现(1)创作更高质量的例子,以提示导致更高质量的世代; (2)令人惊讶的是,在头到头比较中,人群公司通常更喜欢GPT-3生成的解释,以众包中包含的人性写入的解释。然而,Crowdworker评级也表明,虽然模型产生了事实,语法和充分的解释,但它们具有改进的空间,例如沿着提供新颖信息和支持标签的轴。我们创建了一种管道,该管道将GPT-3与监督过滤器结合起来,该过滤器通过二进制可接受性判断来包含人类循环。尽管具有重要的主观性内在的判断可接受性,但我们的方法能够始终如一地过滤人类可接受的GPT-3生成的解释。
translated by 谷歌翻译
Large language models (LLMs) have demonstrated excellent zero-shot generalization to new language tasks. However, effective utilization of LLMs for zero-shot visual question-answering (VQA) remains challenging, primarily due to the modality disconnection and task disconnection between LLM and VQA task. End-to-end training on vision and language data may bridge the disconnections, but is inflexible and computationally expensive. To address this issue, we propose \emph{Img2Prompt}, a plug-and-play module that provides the prompts that can bridge the aforementioned modality and task disconnections, so that LLMs can perform zero-shot VQA tasks without end-to-end training. In order to provide such prompts, we further employ LLM-agnostic models to provide prompts that can describe image content and self-constructed question-answer pairs, which can effectively guide LLM to perform zero-shot VQA tasks. Img2Prompt offers the following benefits: 1) It can flexibly work with various LLMs to perform VQA. 2)~Without the needing of end-to-end training, it significantly reduces the cost of deploying LLM for zero-shot VQA tasks. 3) It achieves comparable or better performance than methods relying on end-to-end training. For example, we outperform Flamingo~\cite{Deepmind:Flamingo2022} by 5.6\% on VQAv2. On the challenging A-OKVQA dataset, our method even outperforms few-shot methods by as much as 20\%.
translated by 谷歌翻译
基于知识的视觉问题答案(VQA)涉及回答图像中不存在外部知识的问题。现有方法首先从外部资源中检索知识,然后通过所选知识,输入图像和答案预测的问题进行理性。但是,这种两步方法可能导致不匹配,可能会限制VQA性能。例如,检索到的知识可能与该问题无关紧要,并且在推理过程中重新安装的知识特征可能会偏离其在知识库中的最初含义(KB)。为了应对这一挑战,我们提出了PICA,这是一种简单而有效的方法,该方法通过使用图像字幕提示GPT3用于基于知识的VQA。受GPT-3在知识检索和问题答案中的力量的启发,而不是像以前的工作那样使用结构化的KB,而是将GPT-3视为一种隐式和非结构化的KB,可以共同获取和处理相关的知识。具体来说,我们首先将图像转换为GPT-3可以理解的标题(或标签),然后通过提供一些文字中的VQA示例来调整GPT-3以几个弹射方式解决VQA任务。我们通过仔细研究进一步提高绩效:(i)哪种文本格式最能描述图像内容,以及(ii)如何更好地选择和使用中文示例。 PICA解锁了GPT-3用于多模式任务的首次使用。通过仅使用16个示例,PICA超过了OK-VQA数据集上的绝对+8.6点。我们还在VQAV2上基准了PICA,PICA还显示出不错的表现。
translated by 谷歌翻译
我们挑战AI模型,以“展示”对《纽约客》标题比赛的复杂多模式幽默的理解。具体而言,我们开发了三个精心限制的任务,以掌握图像和标题之间的潜在复杂和意外的关系,并且对人类经验的广泛品种产生了复杂和意外的寓意;这些是纽约口径卡通的标志。我们调查了直接将卡通像素和字幕输入的视觉和语言模型,以及仅通过提供图像的文本描述来规避图像处理的仅限语言模型。即使我们为卡通图像提供了丰富的多方面注释,我们也可以确定高质量的机器学习模型(例如,微调,175b参数语言模型)和人类之间的性能差距。我们公开发布我们的语料库,包括描述图像的位置/实体的注释,场景的不寻常以及对笑话的解释。
translated by 谷歌翻译
Reasoning, as an essential ability for complex problem-solving, can provide back-end support for various real-world applications, such as medical diagnosis, negotiation, etc. This paper provides a comprehensive survey of cutting-edge research on reasoning with language model prompting. We introduce research works with comparisons and summaries and provide systematic resources to help beginners. We also discuss the potential reasons for emerging such reasoning abilities and highlight future research directions.
translated by 谷歌翻译
Instruction tuning enables pretrained language models to perform new tasks from inference-time natural language descriptions. These approaches rely on vast amounts of human supervision in the form of crowdsourced datasets or user interactions. In this work, we introduce Unnatural Instructions: a large dataset of creative and diverse instructions, collected with virtually no human labor. We collect 64,000 examples by prompting a language model with three seed examples of instructions and eliciting a fourth. This set is then expanded by prompting the model to rephrase each instruction, creating a total of approximately 240,000 examples of instructions, inputs, and outputs. Experiments show that despite containing a fair amount of noise, training on Unnatural Instructions rivals the effectiveness of training on open-source manually-curated datasets, surpassing the performance of models such as T0++ and Tk-Instruct across various benchmarks. These results demonstrate the potential of model-generated data as a cost-effective alternative to crowdsourcing for dataset expansion and diversification.
translated by 谷歌翻译
培训和评估语言模型越来越多地要求构建元数据 - 多样化的策划数据收集,并具有清晰的出处。自然语言提示最近通过将现有的,有监督的数据集转换为多种新颖的预处理任务,突出了元数据策划的好处,从而改善了零击的概括。尽管将这些以数据为中心的方法转化为生物医学语言建模的通用域文本成功,但由于标记的生物医学数据集在流行的数据中心中的代表性大大不足,因此仍然具有挑战性。为了应对这一挑战,我们介绍了BigBio一个由126个以上的生物医学NLP数据集的社区库,目前涵盖12个任务类别和10多种语言。 BigBio通过对数据集及其元数据进行程序化访问来促进可再现的元数据策划,并与当前的平台兼容,以及时工程和端到端的几个/零射击语言模型评估。我们讨论了我们的任务架构协调,数据审核,贡献指南的过程,并概述了两个说明性用例:生物医学提示和大规模,多任务学习的零射门评估。 BigBio是一项持续的社区努力,可在https://github.com/bigscience-workshop/biomedical上获得。
translated by 谷歌翻译