本文的目标是对面部素描合成(FSS)问题进行全面的研究。然而,由于获得了手绘草图数据集的高成本,因此缺乏完整的基准,用于评估过去十年的FSS算法的开发。因此,我们首先向FSS引入高质量的数据集,名为FS2K,其中包括2,104个图像素描对,跨越三种类型的草图样式,图像背景,照明条件,肤色和面部属性。 FS2K与以前的FSS数据集不同于难度,多样性和可扩展性,因此应促进FSS研究的进展。其次,我们通过调查139种古典方法,包括34个手工特征的面部素描合成方法,37个一般的神经式传输方法,43个深映像到图像翻译方法,以及35个图像 - 素描方法。此外,我们详细说明了现有的19个尖端模型的综合实验。第三,我们为FSS提供了一个简单的基准,名为FSGAN。只有两个直截了当的组件,即面部感知屏蔽和风格矢量扩展,FSGAN将超越所提出的FS2K数据集的所有先前最先进模型的性能,通过大边距。最后,我们在过去几年中汲取的经验教训,并指出了几个未解决的挑战。我们的开源代码可在https://github.com/dengpingfan/fsgan中获得。
translated by 谷歌翻译