通过手动创建或使用3D扫描工具来创建高质量的铰接3D动物3D模型。因此,从2D图像重建铰接的3D对象的技术至关重要且非常有用。在这项工作中,我们提出了一个实用问题设置,以估算只有几个(10-30)特定动物物种(例如马)的野外图像(Horse)的3D姿势和形状。与依赖于预定义模板形状的现有作品相反,我们不假设任何形式的2D或3D地面真相注释,也不利用任何多视图或时间信息。此外,每个输入图像合奏都可以包含具有不同姿势,背景,照明和纹理的动物实例。我们的主要见解是,与整体动物相比,3D零件的形状要简单得多,并且它们是强大的W.R.T.动物姿势关节。遵循这些见解,我们提出了Lassie,这是一个新颖的优化框架,以最少的用户干预以自我监督的方式发现3D部分。 Lassie背后的关键推动力是使用自我篇幅的深度功能实现2D-3D零件的一致性。与先前的艺术相比,关于Pascal-Part和自我收集的野生动物数据集的实验表明,3D重建以及2D和3D部分的发现都更好。项目页面:chhankyo.github.io/lassie/
translated by 谷歌翻译
Automatically estimating 3D skeleton, shape, camera viewpoints, and part articulation from sparse in-the-wild image ensembles is a severely under-constrained and challenging problem. Most prior methods rely on large-scale image datasets, dense temporal correspondence, or human annotations like camera pose, 2D keypoints, and shape templates. We propose Hi-LASSIE, which performs 3D articulated reconstruction from only 20-30 online images in the wild without any user-defined shape or skeleton templates. We follow the recent work of LASSIE that tackles a similar problem setting and make two significant advances. First, instead of relying on a manually annotated 3D skeleton, we automatically estimate a class-specific skeleton from the selected reference image. Second, we improve the shape reconstructions with novel instance-specific optimization strategies that allow reconstructions to faithful fit on each instance while preserving the class-specific priors learned across all images. Experiments on in-the-wild image ensembles show that Hi-LASSIE obtains higher quality state-of-the-art 3D reconstructions despite requiring minimum user input.
translated by 谷歌翻译
从2D图像中学习可变形的3D对象通常是一个不适的问题。现有方法依赖于明确的监督来建立多视图对应关系,例如模板形状模型和关键点注释,这将其在“野外”中的对象上限制了。建立对应关系的一种更自然的方法是观看四处移动的对象的视频。在本文中,我们介绍了Dove,一种方法,可以从在线可用的单眼视频中学习纹理的3D模型,而无需关键点,视点或模板形状监督。通过解决对称性诱导的姿势歧义并利用视频中的时间对应关系,该模型会自动学会从每个单独的RGB框架中分解3D形状,表达姿势和纹理,并准备在测试时间进行单像推断。在实验中,我们表明现有方法无法学习明智的3D形状,而无需其他关键点或模板监督,而我们的方法在时间上产生了时间一致的3D模型,可以从任意角度来对其进行动画和呈现。
translated by 谷歌翻译
铰接式3D形状重建的事先工作通常依赖于专用传感器(例如,同步的多摄像机系统)或预先构建的3D可变形模型(例如,Smal或SMPL)。这些方法无法在野外扩展到不同的各种物体。我们呈现Banmo,这是一种需要专用传感器的方法,也不需要预定义的模板形状。 Banmo在可怜的渲染框架中从许多单眼休闲视频中建立高保真,铰接式的3D模型(包括形状和动画皮肤的重量)。虽然许多视频的使用提供了更多的相机视图和对象关节的覆盖范围,但它们在建立不同背景,照明条件等方面建立了重大挑战。我们的主要洞察力是合并三所思想学校; (1)使用铰接骨骼和混合皮肤的经典可变形形状模型,(2)可容纳基于梯度的优化,(3)在像素之间产生对应关系的规范嵌入物模型。我们介绍了神经混合皮肤模型,可允许可微分和可逆的铰接变形。与规范嵌入式结合时,这些模型允许我们在跨越可通过循环一致性自我监督的视频中建立密集的对应。在真实和合成的数据集上,Banmo显示比人类和动物的先前工作更高保真3D重建,具有从新颖的观点和姿势的现实图像。项目网页:Banmo-www.github.io。
translated by 谷歌翻译
Recovering the skeletal shape of an animal from a monocular video is a longstanding challenge. Prevailing animal reconstruction methods often adopt a control-point driven animation model and optimize bone transforms individually without considering skeletal topology, yielding unsatisfactory shape and articulation. In contrast, humans can easily infer the articulation structure of an unknown animal by associating it with a seen articulated character in their memory. Inspired by this fact, we present CASA, a novel Category-Agnostic Skeletal Animal reconstruction method consisting of two major components: a video-to-shape retrieval process and a neural inverse graphics framework. During inference, CASA first retrieves an articulated shape from a 3D character assets bank so that the input video scores highly with the rendered image, according to a pretrained language-vision model. CASA then integrates the retrieved character into an inverse graphics framework and jointly infers the shape deformation, skeleton structure, and skinning weights through optimization. Experiments validate the efficacy of CASA regarding shape reconstruction and articulation. We further demonstrate that the resulting skeletal-animated characters can be used for re-animation.
translated by 谷歌翻译
单视图重建的方法通常依赖于观点注释,剪影,缺乏背景,同一实例的多个视图,模板形状或对称性。我们通过明确利用不同对象实例的图像之间的一致性来避免所有此类监督和假设。结果,我们的方法可以从描述相同对象类别的大量未标记图像中学习。我们的主要贡献是利用跨境一致性的两种方法:(i)渐进式调理,一种培训策略,以逐步将模型从类别中逐步专业为课程学习方式进行实例; (ii)邻居重建,具有相似形状或纹理的实例之间的损失。对于我们方法的成功也至关重要的是:我们的结构化自动编码体系结构将图像分解为显式形状,纹理,姿势和背景;差异渲染的适应性公式;以及一个新的优化方案在3D和姿势学习之间交替。我们将我们的方法(独角兽)在多样化的合成造型数据集上进行比较,这是需要多种视图作为监督的方法的经典基准 - 以及标准的实数基准(Pascal3d+ Car,Cub,Cub,Cub,Cub),大多数方法都需要已知的模板和Silhouette注释。我们还展示了对更具挑战性的现实收藏集(Compcars,LSUN)的适用性,在该收藏中,剪影不可用,图像没有在物体周围裁剪。
translated by 谷歌翻译
人类性能捕获是一种非常重要的计算机视觉问题,在电影制作和虚拟/增强现实中具有许多应用。许多以前的性能捕获方法需要昂贵的多视图设置,或者没有恢复具有帧到帧对应关系的密集时空相干几何。我们提出了一种新颖的深度致密人体性能捕获的深层学习方法。我们的方法是基于多视图监督的弱监督方式培训,完全删除了使用3D地面真理注释的培训数据的需求。网络架构基于两个单独的网络,将任务解散为姿势估计和非刚性表面变形步骤。广泛的定性和定量评估表明,我们的方法在质量和稳健性方面优于现有技术。这项工作是DeepCAP的扩展版本,在那里我们提供更详细的解释,比较和结果以及应用程序。
translated by 谷歌翻译
从单眼图像中恢复纹理的3D网格是高度挑战的,尤其是对于缺乏3D地面真理的野外物体。在这项工作中,我们提出了网络文化,这是一个新的框架,可通过利用3D GAN预先训练的3D纹理网格合成的3D GAN的生成性先验。重建是通过在3D GAN中搜索最类似于目标网格的潜在空间来实现重建。由于预先训练的GAN以网状几何形状和纹理封装了丰富的3D语义,因此在GAN歧管内进行搜索,因此自然地使重建的真实性和忠诚度正常。重要的是,这种正则化直接应用于3D空间,从而提供了在2D空间中未观察到的网格零件的关键指导。标准基准测试的实验表明,我们的框架获得了忠实的3D重建,并在观察到的部分和未观察到的部分中都具有一致的几何形状和纹理。此外,它可以很好地推广到不太常见的网格中,例如可变形物体的扩展表达。代码在https://github.com/junzhezhang/mesh-inversion上发布
translated by 谷歌翻译
We introduce Structured 3D Features, a model based on a novel implicit 3D representation that pools pixel-aligned image features onto dense 3D points sampled from a parametric, statistical human mesh surface. The 3D points have associated semantics and can move freely in 3D space. This allows for optimal coverage of the person of interest, beyond just the body shape, which in turn, additionally helps modeling accessories, hair, and loose clothing. Owing to this, we present a complete 3D transformer-based attention framework which, given a single image of a person in an unconstrained pose, generates an animatable 3D reconstruction with albedo and illumination decomposition, as a result of a single end-to-end model, trained semi-supervised, and with no additional postprocessing. We show that our S3F model surpasses the previous state-of-the-art on various tasks, including monocular 3D reconstruction, as well as albedo and shading estimation. Moreover, we show that the proposed methodology allows novel view synthesis, relighting, and re-posing the reconstruction, and can naturally be extended to handle multiple input images (e.g. different views of a person, or the same view, in different poses, in video). Finally, we demonstrate the editing capabilities of our model for 3D virtual try-on applications.
translated by 谷歌翻译
我们的目标是从单个图像中恢复3D形状和姿势。这是一项艰巨的任务,因为狗表现出各种形状和外表,并且高度阐明。最近的工作提出了直接从图像中直接带有其他肢体规模参数的Smal动物模型。我们的方法称为BARC(使用分类的品种调查回归),以几种重要方式超越了先前的工作。首先,我们修改SMAL形状空间,以更适合表示狗形。但是,即使具有更好的形状模型,从图像中回归狗形状的问题仍然具有挑战性,因为我们缺少具有3D地面真相的配对图像。为了弥补缺乏配对数据的缺乏,我们制定了利用有关狗品种信息的新损失。特别是,我们利用了同一品种的狗具有相似的身体形状的事实。我们制定了一个新型的品种相似性损失,包括两个部分:一个术语鼓励同一品种的狗形状比不同品种的狗更相似。第二个是品种分类损失,有助于产生可识别的品种特异性形状。通过消融研究,我们发现我们的品种损失显着提高了没有它们的基线的形状精度。我们还通过知觉研究将BARC与WLDO进行定性比较,并发现我们的方法产生的狗更现实。这项工作表明,有关遗传相似性的A-Priori信息可以帮助弥补缺乏3D培训数据。这个概念可能适用于其他动物物种或种类。我们的代码可在https://barc.is.tue.mpg.de/上公开提供。
translated by 谷歌翻译
综合照片 - 现实图像和视频是计算机图形的核心,并且是几十年的研究焦点。传统上,使用渲染算法(如光栅化或射线跟踪)生成场景的合成图像,其将几何形状和材料属性的表示为输入。统称,这些输入定义了实际场景和呈现的内容,并且被称为场景表示(其中场景由一个或多个对象组成)。示例场景表示是具有附带纹理的三角形网格(例如,由艺术家创建),点云(例如,来自深度传感器),体积网格(例如,来自CT扫描)或隐式曲面函数(例如,截短的符号距离)字段)。使用可分辨率渲染损耗的观察结果的这种场景表示的重建被称为逆图形或反向渲染。神经渲染密切相关,并将思想与经典计算机图形和机器学习中的思想相结合,以创建用于合成来自真实观察图像的图像的算法。神经渲染是朝向合成照片现实图像和视频内容的目标的跨越。近年来,我们通过数百个出版物显示了这一领域的巨大进展,这些出版物显示了将被动组件注入渲染管道的不同方式。这种最先进的神经渲染进步的报告侧重于将经典渲染原则与学习的3D场景表示结合的方法,通常现在被称为神经场景表示。这些方法的一个关键优势在于它们是通过设计的3D-一致,使诸如新颖的视点合成捕获场景的应用。除了处理静态场景的方法外,我们还涵盖了用于建模非刚性变形对象的神经场景表示...
translated by 谷歌翻译
我们向渲染和时间(4D)重建人类的渲染和时间(4D)重建的神经辐射场,通过稀疏的摄像机捕获或甚至来自单眼视频。我们的方法将思想与神经场景表示,新颖的综合合成和隐式统计几何人称的人类表示相结合,耦合使用新颖的损失功能。在先前使用符号距离功能表示的结构化隐式人体模型,而不是使用统一的占用率来学习具有统一占用的光域字段。这使我们能够从稀疏视图中稳健地融合信息,并概括超出在训练中观察到的姿势或视图。此外,我们应用几何限制以共同学习观察到的主题的结构 - 包括身体和衣服 - 并将辐射场正规化为几何合理的解决方案。在多个数据集上的广泛实验证明了我们方法的稳健性和准确性,其概括能力显着超出了一系列的姿势和视图,以及超出所观察到的形状的统计外推。
translated by 谷歌翻译
控制铰接对象时控制其姿势对于电影虚拟现实或动画等应用至关重要。然而,操纵对象的姿势需要了解其基础结构,即其关节以及它们如何互相互动。不幸的是,假设要知道的结构,因为现有方法所做的,排除了在新的对象类别上工作的能力。我们建议通过观察它们从多个视图移动,没有额外的监督,例如联合注释或有关该结构的信息,从而了解先前看不见的对象的外观和结构。我们的洞察力是,相对于彼此移动的相邻部件必须通过接头连接。为了利用这一观察,我们将3D的物体部分塑造为椭圆体,这使我们能够识别关节。我们将这种明确表示与隐式的表示,该显式表示可以补偿引入的近似值。我们表明我们的方法为不同的结构,从四足动物到单臂机器人到人类工作。
translated by 谷歌翻译
在自然界中,动物的集体行为(例如飞鸟)由同一物种的个体之间的相互作用主导。但是,对鸟类物种中这种行为的研究是一个复杂的过程,即人类无法使用常规的视觉观察技术(例如自然界的焦点采样)进行。对于鸟类等社会动物,群体形成的机制可以帮助生态学家了解社交线索及其视觉特征随着时间的流逝(例如姿势和形状)之间的关系。但是,恢复飞行鸟类的不同姿势和形状是一个极具挑战性的问题。解决此瓶颈的一种广泛的解决方案是将姿势和形状从2D图像提取到3D对应关系。 3D视觉的最新进展导致了关于3D形状和姿势估计的许多令人印象深刻的作品,每项作品都有不同的利弊。据我们所知,这项工作是首次尝试概述基于单眼视觉的3D鸟重建的最新进展,使计算机视觉和生物学研究人员概述了现有方法,并比较其特征。
translated by 谷歌翻译
我们提出了可区分的立体声,这是一种多视图立体方法,可从几乎没有输入视图和嘈杂摄像机中重建形状和纹理。我们将传统的立体定向和现代可区分渲染配对,以构建端到端模型,该模型可以预测具有不同拓扑和形状的物体的纹理3D网眼。我们将立体定向作为优化问题,并通过简单的梯度下降同时更新形状和相机。我们进行了广泛的定量分析,并与传统的多视图立体声技术和基于最先进的学习方法进行比较。我们展示了令人信服的重建,这些重建是在挑战现实世界的场景上,以及具有复杂形状,拓扑和纹理的大量对象类型。项目网页:https://shubham-goel.github.io/ds/
translated by 谷歌翻译
We present HARP (HAnd Reconstruction and Personalization), a personalized hand avatar creation approach that takes a short monocular RGB video of a human hand as input and reconstructs a faithful hand avatar exhibiting a high-fidelity appearance and geometry. In contrast to the major trend of neural implicit representations, HARP models a hand with a mesh-based parametric hand model, a vertex displacement map, a normal map, and an albedo without any neural components. As validated by our experiments, the explicit nature of our representation enables a truly scalable, robust, and efficient approach to hand avatar creation. HARP is optimized via gradient descent from a short sequence captured by a hand-held mobile phone and can be directly used in AR/VR applications with real-time rendering capability. To enable this, we carefully design and implement a shadow-aware differentiable rendering scheme that is robust to high degree articulations and self-shadowing regularly present in hand motion sequences, as well as challenging lighting conditions. It also generalizes to unseen poses and novel viewpoints, producing photo-realistic renderings of hand animations performing highly-articulated motions. Furthermore, the learned HARP representation can be used for improving 3D hand pose estimation quality in challenging viewpoints. The key advantages of HARP are validated by the in-depth analyses on appearance reconstruction, novel-view and novel pose synthesis, and 3D hand pose refinement. It is an AR/VR-ready personalized hand representation that shows superior fidelity and scalability.
translated by 谷歌翻译
Input Reconstruction Side and top down view Part Segmentation Input Reconstruction Side and top down view Part Segmentation Figure 1: Human Mesh Recovery (HMR): End-to-end adversarial learning of human pose and shape. We describe a real time framework for recovering the 3D joint angles and shape of the body from a single RGB image. The first two rowsshow results from our model trained with some 2D-to-3D supervision, the bottom row shows results from a model that is trained in a fully weakly-supervised manner without using any paired 2D-to-3D supervision. We infer the full 3D body even in case of occlusions and truncations. Note that we capture head and limb orientations.
translated by 谷歌翻译
像素级别的2D对象语义理解是计算机视觉中的一个重要主题,可以帮助在日常生活中深入了解对象(例如功能和可折扣)。然而,最先前的方法直接在2D图像中的对应关系上培训,这是端到端,但在3D空间中失去了大量信息。在本文中,我们提出了一种关于在3D域中预测图像对应语义的新方法,然后将它们突出回2D图像以实现像素级别的理解。为了获得当前图像数据集中不存在的可靠的3D语义标签,我们构建一个名为KeyPointNet的大型关键点知识引擎,其中包含103,450个关键点和来自16个对象类别的8,234个3D模型。我们的方法利用3D视觉中的优势,并可以明确地理由对物体自动阻塞和可见性。我们表明我们的方法在标准语义基准上给出了比较甚至卓越的结果。
translated by 谷歌翻译
我们介绍了Amazon Berkeley对象(ABO),这是一个新的大型数据集,旨在帮助弥合真实和虚拟3D世界之间的差距。ABO包含产品目录图像,元数据和艺术家创建的3D模型,具有复杂的几何形状和与真实的家用物体相对应的物理基础材料。我们得出了具有挑战性的基准,这些基准利用ABO的独特属性,并测量最先进的对象在三个开放问题上的最新限制,以了解实际3D对象:单视3D 3D重建,材料估计和跨域多视图对象检索。
translated by 谷歌翻译