我们探索如何产生一系列思想 - 一系列中间推理步骤 - 显着提高了大语言模型执行复杂推理的能力。特别是,我们通过一种称为“思想链”提示的简单方法在足够大的语言模型中自然出现这种推理能力,在此过程中,一些思想示范被作为提示的示例提供了。三种大语模型的实验表明,促使思想链提高了一系列算术,常识和象征性推理任务的性能。经验收益可能会引人注目。例如,仅使用八个思想范围的540B参数语言模型才能在数学单词问题的GSM8K基准上实现最新的精度,甚至超过了带有验证器的Fineted GPT-3。
translated by 谷歌翻译
从制造环境到个人房屋的最终用户任务的巨大多样性使得预编程机器人非常具有挑战性。事实上,教学机器人从划痕的新行动可以重复使用以前看不见的任务仍然是一个艰难的挑战,一般都留给了机器人专家。在这项工作中,我们展示了Iropro,这是一个交互式机器人编程框架,允许最终用户没有技术背景,以教授机器人新的可重用行动。我们通过演示和自动规划技术将编程结合起来,以允许用户通过通过动力学示范教授新的行动来构建机器人的知识库。这些行动是概括的,并重用任务计划程序来解决用户定义的先前未经调查的问题。我们将iropro作为Baxter研究机器人的端到端系统实施,同时通过演示通过示范来教授低级和高级操作,以便用户可以通过图形用户界面自定义以适应其特定用例。为了评估我们的方法的可行性,我们首先进行了预设计实验,以更好地了解用户采用所涉及的概念和所提出的机器人编程过程。我们将结果与设计后实验进行比较,在那里我们进行了用户学习,以验证我们对真实最终用户的方法的可用性。总体而言,我们展示了具有不同编程水平和教育背景的用户可以轻松学习和使用Iropro及其机器人编程过程。
translated by 谷歌翻译
人工推理通常可以理解为两个系统之间的相互作用:直观和关联(“系统1”)和审议和逻辑(“系统2”)。神经序列模型 - 在执行复杂,结构化任务时越来越成功 - 表现出系统1的优点和故障模式:它们是快速和学习数据的模式,但通常不一致和不连贯。在这项工作中,我们通过添加系统2-Inspired逻辑推理,寻求一种轻量级,无培训的手段来改善现有系统1样序列模型。我们探讨了该主题的几种变体,其中通过符号推理模块检查来自神经序列模型的候选几代,可以通过符号推理模块来接受或拒绝几代人。我们的方法使用神经推理来介导神经系统1和逻辑系统2.导致强大的故事生成和接地的指示,表明这种方法可以增加神经基代的一致性和准确性。
translated by 谷歌翻译
机器人中的任务和运动规划问题通常将符号规划与连续状态和动作变量相处的运动优化相结合,从而满足满足在任务变量上强加的逻辑约束的轨迹。符号规划可以用任务变量的数量呈指数级级,因此最近的工作诸如PDDLSTREAM的工作侧重于乐观规划,以逐步增长的对象和事实,直到找到可行的轨迹。然而,这种设置以宽度第一的方式被彻底地且均匀地扩展,无论手头的问题的几何结构如何,这使得具有大量物体的长时间地理推理,这令人难以耗时。为了解决这个问题,我们提出了一个几何通知的符号规划员,以最佳的方式扩展了一组对象和事实,优先由从现有搜索计算中学到的基于神经网络的基于神经网络的分数。我们在各种问题上评估我们的方法,并展示了在大型或困难情景中规划的提高能力。我们还在几个块堆叠操作任务中将算法应用于7DOF机器人手臂。
translated by 谷歌翻译
该项目提出了一种自动生成视频游戏动态描述的动作模型的方法,以及与计划代理的集成,以执行和监控计划。规划者使用这些动作模型来获得许多不同视频游戏中的代理的审议行为,并与反应模块组合,解决确定性和无确定级别。实验结果验证了该方法的方法,并证明了知识工程师的努力在这种复杂域的定义中可以大大减少。此外,域名的基准已经制定,这可能对国际规划社会评估国际规划竞赛中的规划者感兴趣。
translated by 谷歌翻译
分层任务网络(HTN)计划者使用具有额外域知识的分解过程生成计划,以指导搜索计划任务。尽管域专家会开发HTN描述,但他们可能会反复描述相同的先决条件或很少使用或可能被分解的方法。通过利用三阶段的编译器设计,我们可以轻松地支持更多的语言描述和预处理优化,这些优化可以极大地提高此类域中的运行时效率。在本文中,我们使用HTN IPC 2020中使用的高血压HTN计划者评估了这种优化。
translated by 谷歌翻译
行为树(BT)是一种在自主代理中(例如机器人或计算机游戏中的虚拟实体)之间在不同任务之间进行切换的方法。 BT是创建模块化和反应性的复杂系统的一种非常有效的方法。这些属性在许多应用中至关重要,这导致BT从计算机游戏编程到AI和机器人技术的许多分支。在本书中,我们将首先对BTS进行介绍,然后我们描述BTS与早期切换结构的关系,并且在许多情况下如何概括。然后,这些想法被用作一套高效且易于使用的设计原理的基础。安全性,鲁棒性和效率等属性对于自主系统很重要,我们描述了一套使用BTS的状态空间描述正式分析这些系统的工具。借助新的分析工具,我们可以对BTS如何推广早期方法的形式形式化。我们还显示了BTS在自动化计划和机器学习中的使用。最后,我们描述了一组扩展的工具,以捕获随机BT的行为,其中动作的结果由概率描述。这些工具可以计算成功概率和完成时间。
translated by 谷歌翻译
长期以来,能够接受和利用特定于人类的任务知识的增强学习(RL)代理人被认为是开发可扩展方法来解决长途问题的可能策略。尽管以前的作品已经研究了使用符号模型以及RL方法的可能性,但他们倾向于假设高级动作模型在低级别上是可执行的,并且流利者可以专门表征所有理想的MDP状态。但是,现实世界任务的符号模型通常是不完整的。为此,我们介绍了近似符号模型引导的增强学习,其中我们将正式化符号模型与基础MDP之间的关系,这将使我们能够表征符号模型的不完整性。我们将使用这些模型来提取将用于分解任务的高级地标。在低水平上,我们为地标确定的每个可能的任务次目标学习了一组不同的政策,然后将其缝合在一起。我们通过在三个不同的基准域进行测试来评估我们的系统,并显示即使是不完整的符号模型信息,我们的方法也能够发现任务结构并有效地指导RL代理到达目标。
translated by 谷歌翻译
本文提出了一种基于答案设置编程(ASP)的方法,用于代表自然语言文本生成的知识。文本中的知识是使用Neo Davidsonian的形式主义建模的,然后将其表示为答案集计划。相关的致辞知识另外导入Wordnet等资源,并在ASP中表示。然后可以使用所产生的知识库来在ASP系统的帮助下执行推理。这种方法可以促进许多自然语言任务,如自动问题应答,文本摘要和自动化问题。基于ASP的技术表示,例如默认推理,分层知识组织,默认值等的首选项,用于模拟完成这些任务所需的致辞推理方法。在本文中,我们描述了我们开发的CaspR系统,以自动解决在给出英语文本时回答自然语言问题的任务。 CASPR可以被视为一个系统,通过“了解”文本并已在队列数据集上进行了测试,具有有希望的结果。
translated by 谷歌翻译
鉴于大型语言模型的广泛能力,应该有可能朝着一般的文本的助手工作,这些助手与人类价值一致,这意味着它是有帮助,诚实的和无害的。在此方向上的初始遗传,我们研究简单的基线技术和评估,例如提示。我们发现,从模型规模增加适度的干预措施的好处,概括为各种对准评估,并不会损害大型模型的性能。接下来,我们调查与对齐,比较仿制,二进制歧视和排名偏好建模相关的几个培训目标的缩放趋势。我们发现排名优先级模型比模仿学习更好地表现得多,并且通常以模型大小更有利地缩放。相比之下,二进制歧视通常与模仿学习非常类似地执行和缩放。最后,我们研究了一种“偏好模型预训练阶段的培训阶段,其目的是在对人偏好的芬明时提高样本效率。
translated by 谷歌翻译
本文探讨了大语言模型的自然语言生成能力,并应用于编程课程中常见的两种学习资源类型。使用OpenAI Codex作为大语言模型,我们创建编程练习(包括示例解决方案和测试用例)和代码说明,从定性和定量上评估这些练习。我们的结果表明,大多数自动生成的内容既新颖又明智,在某些情况下可以按原样使用。在创建练习时,我们发现仅通过提供关键字作为模型输入来影响编程概念和它们所包含的上下文主题非常容易。我们的分析表明,大规模生成机器学习模型是指导者的工具,尽管仍然需要进行一些监督以确保生成的内容的质量在传递给学生之前。我们进一步讨论了OpenAI Codex和类似工具对入门编程教育的含义,并强调了未来的研究流,这些研究流有可能提高教师和学生的教育体验质量。
translated by 谷歌翻译
机器学习和认知科学的最新工作表明,了解因果信息对于智力的发展至关重要。使用``Blicket otter''环境的认知科学的广泛文献表明,孩子们擅长多种因果推理和学习。我们建议将该环境适应机器​​学习代理。当前机器学习算法的关键挑战之一是建模和理解因果关系:关于因果关系集的可转移抽象假设。相比之下,即使是幼儿也会自发学习和使用因果关系。在这项工作中,我们提出了一个新的基准 - 一种灵活的环境,可以评估可变因果溢出物下的现有技术 - 并证明许多现有的最新方法在这种环境中概括了困难。该基准的代码和资源可在https://github.com/cannylab/casual_overhypothess上获得。
translated by 谷歌翻译
任务规划的挑战之一是找出导致计划失败的原因以及如何智能地处理失败。本文展示了如何实现这一目标。该想法是由连接的图形的启发:每个verticle表示一组兼容的\ extent {状态},每个边缘表示\ textit {action}。对于任何给定的初始状态和目标,我们构建虚拟操作以确保我们始终通过任务规划获得计划。本文展示了如何引入虚拟操作以扩展操作模型以使要连接的图形:i)显式定义静态谓词(类型,永久属性等)或动态谓词(状态);ii)为每个状态构建一个完整的虚拟动作或半虚拟动作;iii)通过逐步规划方法找到规划失败的原因。实施是在三种典型方案中进行评估。
translated by 谷歌翻译
在机器人域中,学习和计划因连续的状态空间,连续的动作空间和较长的任务范围而变得复杂。在这项工作中,我们通过神经符号关系过渡模型(NSRTS)解决了这些挑战,这是一种具有数据效率学习的新型模型,与强大的机器人计划方法兼容,并且可以推广到对象上。NSRT具有符号和神经成分,实现了双重计划方案,其中外循环中的符号AI规划指导内部循环中的神经模型的连续计划。四个机器人计划域中的实验表明,仅在数十或数百个培训情节之后就可以学习NSRT,然后用于快速规划的新任务,这些任务需要高达60个动作,并且涉及比培训期间看到的更多物体。视频:https://tinyurl.com/chitnis-nsrts
translated by 谷歌翻译
AI最近的突破表明了深度学习和深度增强学习的显着力量。然而,这些发展已与特定任务联系在一起,并且分销外概括的进展受到限制。虽然假设可以通过结合合适的感应偏差来克服这些限制,但感应偏差本身的概念往往含糊不清,并且不提供有意义的指导。在论文中,我阐述了不同的学习方法,其中表示没有从神经结构中的偏差产生偏差,而是通过具有已知语义的给定的目标语言来学习。基本思想隐含在主流AI中,其中表示代表以从一阶逻辑的片段到概率结构因果模型的语言编码。挑战是从数据中学习传统上用手制作的表示。泛化是语言语义的结果。本文的目标是使这些想法明确,将它们放在更广泛的背景下,其中目标语言的设计至关重要,并在学习行动和计划的背景下说明它们。为此,在一般讨论之后,我考虑学习行动,一般政策和亚国的陈述(“内在奖励”)。在这些情况下,学习被制定为组合问题,但没有任何东西可以防止使用深度学习技术。实际上,通过具有已知语言的语言的学习表示提供了一个待学习的内容,而使用神经网络的学习表示提供了可以学习陈述的补充说明。挑战和机会是将两者带到一起。
translated by 谷歌翻译
当前独立于域的经典计划者需要问题域和实例作为输入的符号模型,从而导致知识采集瓶颈。同时,尽管深度学习在许多领域都取得了重大成功,但知识是在与符号系统(例如计划者)不兼容的亚符号表示中编码的。我们提出了Latplan,这是一种无监督的建筑,结合了深度学习和经典计划。只有一组未标记的图像对,显示了环境中允许的过渡子集(训练输入),Latplan学习了环境的完整命题PDDL动作模型。稍后,当给出代表初始状态和目标状态(计划输入)的一对图像时,Latplan在符号潜在空间中找到了目标状态的计划,并返回可视化的计划执行。我们使用6个计划域的基于图像的版本来评估LATPLAN:8个插头,15个式嘴,Blockworld,Sokoban和两个LightsOut的变体。
translated by 谷歌翻译
自然语言处理(NLP)已成为当前人工智能繁荣中的主要应用领域之一。转移学习已经启用了大量深入学习的神经网络,接受了语言建模任务,以大大提高了所有语言任务的性能。有趣的是,当模型培训使用包含软件代码的数据培训时,它们在从自然语言规范中生成功能计算机代码时展示了显着的能力。我们认为这是一种难题,用于神经模型为生成词组结构语法提供了一种替代理论,以说明语言有效。由于编程语言的语法由短语结构语法决定,因此成功的神经模型显然是对编程语言的理论基础的理论基础,以及通过扩展,自然语言来实现。我们认为语言模型的术语模型是误导性的,因为深度学习模型不是语言的理论模型,并提出采用语料库模型,这更好地反映了模型的成因和内容。
translated by 谷歌翻译
我们介绍了CRASS(反事实推理评估)数据集,并利用有问题的反事实条件作为一种新颖而有力的工具来评估大型语言模型。我们介绍数据集设计和基准测试,该设计支持对人群验证的人类基线进行评分。我们针对我们的基准测试了六个最先进的模型。我们的结果表明,它对这些模型构成了有效的挑战,并为它们的改进空间打开了可观的空间。
translated by 谷歌翻译
最近的自主代理和机器人的应用,如自动驾驶汽车,情景的培训师,勘探机器人和服务机器人带来了关注与当前生成人工智能(AI)系统相关的至关重要的信任相关挑战。尽管取得了巨大的成功,基于连接主义深度学习神经网络方法的神经网络方法缺乏解释他们对他人的决策和行动的能力。没有符号解释能力,它们是黑色盒子,这使得他们的决定或行动不透明,这使得难以信任它们在安全关键的应用中。最近对AI系统解释性的立场目睹了可解释的人工智能(XAI)的几种方法;然而,大多数研究都专注于应用于计算科学中的数据驱动的XAI系统。解决越来越普遍的目标驱动器和机器人的研究仍然缺失。本文评论了可解释的目标驱动智能代理和机器人的方法,重点是解释和沟通代理人感知功能的技术(示例,感官和愿景)和认知推理(例如,信仰,欲望,意图,计划和目标)循环中的人类。审查强调了强调透明度,可辨与和持续学习以获得解释性的关键策略。最后,本文提出了解释性的要求,并提出了用于实现有效目标驱动可解释的代理和机器人的路线图。
translated by 谷歌翻译
预处理的大语言模型(LLM)广泛用于自然语言处理(NLP)的许多子场,通常被称为具有特定任务示例的优秀少数学习者。值得注意的是,思想链(COT)提示,这是一种通过分步答案示例引发复杂的多步推理的技术,在算术和符号推理中实现了最新的表演,难以置信的System-2任务不遵循LLMS的标准缩放定律。尽管这些成功通常归因于LLM的几次学习能力,但我们表明,LLM是通过在每个答案之前简单地添加“让我们逐步思考”而成为不错的零射击推理者。实验结果表明,使用相同的单个提示模板,我们的零射击功能明显优于零摄像机LLM在不同的基准推理任务上的零摄像机表现,包括算术(Multiarith,GSM8K,Aqua-Rat,SVAMP,SVAMP),符号推理(最后一个字母,字母,字母,字母,,,,,字母,字母)(最后一个字母),硬币翻转)和其他逻辑推理任务(日期理解,跟踪洗牌对象),而没有任何手工制作的几个示例,例如通过175B参数指令gpt模型将Multiarith的准确性从17.7%提高到78.7%,GSM8K从10.4%提高到40.7%,以及另一种现成的大型模型,540B参数Palm Palm的相似改进。在非常多样化的推理任务中,这个单一提示的多功能性暗示了LLM的尚未开发和研究的基本零拍功能,这表明可以通过简单提示来提取高级,多任务的广泛认知能力。我们希望我们的工作不仅可以作为具有挑战性的推理基准的最小零击基线,而且还强调了仔细探索和分析LLM中隐藏在LLM中的巨大的零拍知识的重要性,然后在制作Finetunning数据集或少数拍摄的典范之前。
translated by 谷歌翻译