我们研究语言模型是否可以评估自己主张的有效性,并预测他们能够正确回答的问题。我们首先表明,当以正确的格式提供时,较大的模型在多样化的多项选择和True/False问题上进行了很好的校准。因此,我们可以通过要求模型首先提出答案,然后评估其答案正确的概率“ p(true)”来对开放式采样任务进行自我评估。我们发现在各种任务中,P(true)的表现,校准和缩放令人鼓舞。当我们允许模型考虑自己的许多样本之前,在预测一种特定可能性的有效性之前,自我评估的性能进一步改善。接下来,我们研究是否可以培训模型来预测“ P(ik)”,即“我知道”问题的概率,而无需参考任何特定提出的答案。模型在预测P(IK)方面表现良好,并且在跨任务中部分概括,尽管它们在新任务上的P(IK)校准方面遇到了困难。预测的p(IK)概率在存在相关的原始材料的情况下以及对数学单词问题解决方案的提示也适当增加。我们希望这些观察结果为培训更诚实的模型提供了基础,并研究了诚实对模型模仿人类写作以外的其他目标培训的案例的普遍性。
translated by 谷歌翻译
鉴于大型语言模型的广泛能力,应该有可能朝着一般的文本的助手工作,这些助手与人类价值一致,这意味着它是有帮助,诚实的和无害的。在此方向上的初始遗传,我们研究简单的基线技术和评估,例如提示。我们发现,从模型规模增加适度的干预措施的好处,概括为各种对准评估,并不会损害大型模型的性能。接下来,我们调查与对齐,比较仿制,二进制歧视和排名偏好建模相关的几个培训目标的缩放趋势。我们发现排名优先级模型比模仿学习更好地表现得多,并且通常以模型大小更有利地缩放。相比之下,二进制歧视通常与模仿学习非常类似地执行和缩放。最后,我们研究了一种“偏好模型预训练阶段的培训阶段,其目的是在对人偏好的芬明时提高样本效率。
translated by 谷歌翻译
As AI systems become more capable, we would like to enlist their help to supervise other AIs. We experiment with methods for training a harmless AI assistant through self-improvement, without any human labels identifying harmful outputs. The only human oversight is provided through a list of rules or principles, and so we refer to the method as 'Constitutional AI'. The process involves both a supervised learning and a reinforcement learning phase. In the supervised phase we sample from an initial model, then generate self-critiques and revisions, and then finetune the original model on revised responses. In the RL phase, we sample from the finetuned model, use a model to evaluate which of the two samples is better, and then train a preference model from this dataset of AI preferences. We then train with RL using the preference model as the reward signal, i.e. we use 'RL from AI Feedback' (RLAIF). As a result we are able to train a harmless but non-evasive AI assistant that engages with harmful queries by explaining its objections to them. Both the SL and RL methods can leverage chain-of-thought style reasoning to improve the human-judged performance and transparency of AI decision making. These methods make it possible to control AI behavior more precisely and with far fewer human labels.
translated by 谷歌翻译
我们表明,GPT-3模型可以学会在不使用模型逻辑的情况下以自然语言来表达其自然语言答案的不确定性。当提出问题时,该模型同时产生答案和信心水平(例如“ 90%的置信度”或“高信心”)。这些级别映射到经过校准的概率。该模型在分配转移下还保持适度的校准,并且对自己的答案中的不确定性敏感,而不是模仿人类的例子。据我们所知,这是第一次证明模型对其自然语言的答案表达了校准的不确定性。为了测试校准,我们介绍了校准任务套件。我们比较了用单词(“语言概率”)表达的不确定性的校准与从模型逻辑提取的不确定性。两种不确定性都能够在分布变化下概括校准。我们还提供了证据表明,GPT-3概括校准的能力取决于预先训练的潜在表示,这些表征与其答案上的认知不确定性相关。
translated by 谷歌翻译
语言模型在需要自然语言理解的各种任务上取得了非凡的表现。然而,最先进的模型通常在需要定量推理的任务上挣扎,例如在大学一级解决数学,科学和工程问题。为了帮助缩小这一差距,我们介绍了Minerva,Minerva是一种在一般自然语言数据上鉴定的大型语言模型,并进一步培训了技术内容。该模型在不使用外部工具的情况下实现了技术基准测试的最新性能。我们还评估了我们在需要定量推理的物理学,生物学,化学,经济学和其他科学方面的200多个本科生问题上评估我们的模型,并发现该模型可以正确回答其中几乎三分之一。
translated by 谷歌翻译
As language models (LMs) scale, they develop many novel behaviors, good and bad, exacerbating the need to evaluate how they behave. Prior work creates evaluations with crowdwork (which is time-consuming and expensive) or existing data sources (which are not always available). Here, we automatically generate evaluations with LMs. We explore approaches with varying amounts of human effort, from instructing LMs to write yes/no questions to making complex Winogender schemas with multiple stages of LM-based generation and filtering. Crowdworkers rate the examples as highly relevant and agree with 90-100% of labels, sometimes more so than corresponding human-written datasets. We generate 154 datasets and discover new cases of inverse scaling where LMs get worse with size. Larger LMs repeat back a dialog user's preferred answer ("sycophancy") and express greater desire to pursue concerning goals like resource acquisition and goal preservation. We also find some of the first examples of inverse scaling in RL from Human Feedback (RLHF), where more RLHF makes LMs worse. For example, RLHF makes LMs express stronger political views (on gun rights and immigration) and a greater desire to avoid shut down. Overall, LM-written evaluations are high-quality and let us quickly discover many novel LM behaviors.
translated by 谷歌翻译
我们调整了大型语言模型,以使用行为克隆来编写自然语言批评(自然语言批判性评论)。关于基于主题的摘要任务,我们的模型所写的批评帮助人类在摘要中发现了本来会错过的漏洞。我们的模型有助于在模型和人类书面摘要中发现自然存在的缺陷,以及人类撰写的摘要中有意误导的摘要中的缺陷。我们研究批评的缩放特性,包括基于主题的汇总和合成任务。较大的模型写出更多有用的批评,在大多数任务上,尽管产生了更困难的输出,但在大多数任务上都更好地进行了自我关注。较大的模型还可以将自己的自我批评纳入反馈,将自己的摘要完善为更好的摘要。最后,我们激励并引入了一个框架,以比较批评能力的产生和歧视能力。我们的测量表明,即使是大型模型也可能仍然具有他们无法或不表达为批评的相关知识。这些结果是使用AI辅助的人类反馈来扩展机器学习系统的监督到人类直接评估的任务的概念证明。我们释放培训数据集以及批评援助实验的样本。
translated by 谷歌翻译
我们介绍了Sparrow,这是一个寻求信息的对话代理,与提示的语言模型基线相比,训练有素,更有帮助,正确和无害。我们使用从人类反馈中的强化学习来培训我们的模型,以帮助人类评估者判断代理人的行为。首先,为了使我们的代理人更有帮助和无害,我们将良好对话的要求分解为代理人应遵循的自然语言规则,并分别向评估者询问每个规则。我们证明,这种崩溃使我们能够收集对代理行为的更多针对性的人类判断,并允许更有效的规则条件奖励模型。其次,我们的代理商在收集对模型声明的偏好判决时提供了支持事实主张的来源的证据。对于事实问题,麻雀提供的证据支持了78%的时间。比基线比基线更享受麻雀,同时对人类的对抗性探测更具弹性,在探测时只有8%的时间违反了我们的规则。最后,我们进行了广泛的分析,表明尽管我们的模型学会遵守我们的规则,但它可以表现出分布偏见。
translated by 谷歌翻译
最近已被证明大型语言模型在各种任务集中获得合理的零射普通化(Brown等,2020)。它已经假设这是语言模型的隐式多任务学习的结果,在语言模型中的预押(Radford等,2019)。可以通过明确的多任务学习直接引起零拍常规化?为了以缩放测试这个问题,我们开发一个系统,以便轻松地将任何自然语言任务映射到人类可读的提示表单中。我们转换一组大量的监督数据集,每个数据集都有多个提示,具有不同的措辞。这些提示的数据集允许基准测试模型执行完全看不见的任务的能力。我们介绍了一个普拉克尔编码器 - 解码器模型(Raffel等,2020; Lester等,2021),覆盖各种任务。该模型在多个标准数据集中达到强大的零点性能,通常优于其尺寸的型号超过16倍。此外,我们的方法对来自Big-替补基准测试的任务子集具有强烈性能,优于其尺寸的6倍。所有提示和培训的型号都可以在https://github.com/ bigscience-workshop / protectsource / httpsource / https://huggingface.co/bigscience/t0pp。
translated by 谷歌翻译
Existing techniques for training language models can be misaligned with the truth: if we train models with imitation learning, they may reproduce errors that humans make; if we train them to generate text that humans rate highly, they may output errors that human evaluators can't detect. We propose circumventing this issue by directly finding latent knowledge inside the internal activations of a language model in a purely unsupervised way. Specifically, we introduce a method for accurately answering yes-no questions given only unlabeled model activations. It works by finding a direction in activation space that satisfies logical consistency properties, such as that a statement and its negation have opposite truth values. We show that despite using no supervision and no model outputs, our method can recover diverse knowledge represented in large language models: across 6 models and 10 question-answering datasets, it outperforms zero-shot accuracy by 4\% on average. We also find that it cuts prompt sensitivity in half and continues to maintain high accuracy even when models are prompted to generate incorrect answers. Our results provide an initial step toward discovering what language models know, distinct from what they say, even when we don't have access to explicit ground truth labels.
translated by 谷歌翻译
Developing safe and useful general-purpose AI systems will require us to make progress on scalable oversight: the problem of supervising systems that potentially outperform us on most skills relevant to the task at hand. Empirical work on this problem is not straightforward, since we do not yet have systems that broadly exceed our abilities. This paper discusses one of the major ways we think about this problem, with a focus on how to turn it into one that can be productively studied empirically. We first present an experimental design centered on choosing tasks for which human specialists succeed but unaided humans and current general AI systems fail. We then present a proof-of-concept experiment following meant to demonstrate a key feature of this experimental design and show its viability with two question-answering tasks: MMLU and time-limited QuALITY. On these tasks, we find that human participants who interact with an unreliable large-language-model dialog assistant through chat -- a trivial baseline strategy for scalable oversight -- substantially outperform both the model alone and their own unaided performance. These results are an encouraging sign that scalable oversight will be tractable to study with present models and bolster recent findings that large language models can productively assist humans with difficult tasks.
translated by 谷歌翻译
我们微调GPT-3使用基于文本的Web浏览环境来回答长形问题,允许模型搜索和导航Web。通过建立任务,以便通过人类执行,我们能够使用模仿学习培训在任务上的模型,然后通过人体反馈优化答案质量。为了使人为评估事实精度更容易,模型必须在浏览支持答案时收集引用。我们在ELI5上培训并评估我们的模型,Reddit用户提出的问题数据集。我们的最佳模型是通过使用行为克隆进行微调GPT-3获得的,然后对训练训练的奖励模型进行拒绝采样来获得以预测人类偏好。这种模式的答案是人类56%的答案,我们的人类示威者的时间和69%的时间到Reddit的最高投票答复。
translated by 谷歌翻译
We demonstrate that scaling up language models greatly improves task-agnostic, few-shot performance, sometimes even becoming competitive with prior state-ofthe-art fine-tuning approaches. Specifically, we train GPT-3, an autoregressive language model with 175 billion parameters, 10x more than any previous nonsparse language model, and test its performance in the few-shot setting. For all tasks, GPT-3 is applied without any gradient updates or fine-tuning, with tasks and few-shot demonstrations specified purely via text interaction with the model. GPT-3 achieves strong performance on many NLP datasets, including translation, question-answering, and cloze tasks. We also identify some datasets where GPT-3's few-shot learning still struggles, as well as some datasets where GPT-3 faces methodological issues related to training on large web corpora.
translated by 谷歌翻译
Finetuning language models on a collection of datasets phrased as instructions has been shown to improve model performance and generalization to unseen tasks. In this paper we explore instruction finetuning with a particular focus on (1) scaling the number of tasks, (2) scaling the model size, and (3) finetuning on chain-of-thought data. We find that instruction finetuning with the above aspects dramatically improves performance on a variety of model classes (PaLM, T5, U-PaLM), prompting setups (zero-shot, few-shot, CoT), and evaluation benchmarks (MMLU, BBH, TyDiQA, MGSM, open-ended generation). For instance, Flan-PaLM 540B instruction-finetuned on 1.8K tasks outperforms PALM 540B by a large margin (+9.4% on average). Flan-PaLM 540B achieves state-of-the-art performance on several benchmarks, such as 75.2% on five-shot MMLU. We also publicly release Flan-T5 checkpoints, which achieve strong few-shot performance even compared to much larger models, such as PaLM 62B. Overall, instruction finetuning is a general method for improving the performance and usability of pretrained language models.
translated by 谷歌翻译
我们表明,在将直接转换应用到数据集之后,自回归语言模型可以学会填充文本,这简单地将文本的跨度从文档的中间移动到了其末尾。虽然近年来这种数据增强引起了人们的极大兴趣,但我们提供了广泛的证据,表明以这种方式转换的数据很大一部分并不会损害原始的左右生成能力,这是通过困惑和抽样评估来衡量的广泛的尺度。鉴于培训模型对中间的有用性,简单性和效率(FIM),我们建议默认情况下使用FIM培训未来的自回归语言模型。为此,我们在关键的超参数上运行一系列消融,例如数据转换频率,转换的结构以及选择填充跨度的方法。我们使用这些消融来规定强大的默认设置和最佳实践来训练FIM模型。我们发布了最佳的填充模型,该模型在API中培训了最佳实践,并发布了我们的填充基准,以帮助未来的研究。
translated by 谷歌翻译
Large language models (LLMs) have demonstrated impressive capabilities in natural language understanding and generation, but the quality bar for medical and clinical applications is high. Today, attempts to assess models' clinical knowledge typically rely on automated evaluations on limited benchmarks. There is no standard to evaluate model predictions and reasoning across a breadth of tasks. To address this, we present MultiMedQA, a benchmark combining six existing open question answering datasets spanning professional medical exams, research, and consumer queries; and HealthSearchQA, a new free-response dataset of medical questions searched online. We propose a framework for human evaluation of model answers along multiple axes including factuality, precision, possible harm, and bias. In addition, we evaluate PaLM (a 540-billion parameter LLM) and its instruction-tuned variant, Flan-PaLM, on MultiMedQA. Using a combination of prompting strategies, Flan-PaLM achieves state-of-the-art accuracy on every MultiMedQA multiple-choice dataset (MedQA, MedMCQA, PubMedQA, MMLU clinical topics), including 67.6% accuracy on MedQA (US Medical License Exam questions), surpassing prior state-of-the-art by over 17%. However, human evaluation reveals key gaps in Flan-PaLM responses. To resolve this we introduce instruction prompt tuning, a parameter-efficient approach for aligning LLMs to new domains using a few exemplars. The resulting model, Med-PaLM, performs encouragingly, but remains inferior to clinicians. We show that comprehension, recall of knowledge, and medical reasoning improve with model scale and instruction prompt tuning, suggesting the potential utility of LLMs in medicine. Our human evaluations reveal important limitations of today's models, reinforcing the importance of both evaluation frameworks and method development in creating safe, helpful LLM models for clinical applications.
translated by 谷歌翻译
抽象推理是智能系统的关键能力。大型语言模型在抽象推理任务上实现了高度的性能,但表现出许多缺陷。但是,人类的抽象推理也是不完美的,并且取决于我们对推理问题内容的知识和信念。例如,人类对在日常情况下基于逻辑规则的逻辑规则比关于抽象属性的任意规则更可靠地理解。语言模型的培训经验类似地赋予了他们先前的期望,这些期望反映了人类的知识和信念。因此,我们假设语言模型会显示出类似人类的内容对抽象推理问题的影响。我们在三个逻辑推理任务中探讨了这一假设:自然语言推论,判断三段论的逻辑有效性和ison选择任务(Wason,1968)。我们发现,最新的大语言模型(具有7或700亿个参数; Hoffman等,2022)反映了这些任务中人类在人类中观察到的许多相同模式 - 像人类一样,模型对可信情况的理由更有效地理由不现实或抽象的。我们的发现对理解这些认知效应以及有助于语言模型表现的因素具有影响。
translated by 谷歌翻译
最先进的语言模型可以在许多任务中匹配人类性能,但它们仍然努力努力执行多步数学推理。要诊断当前模型和支持研究的故障,我们介绍了GSM8K,是8.5k高质量的语言学级别学校数学词问题的数据集。我们发现即使是最大的变压器模型也无法实现高测试性能,尽管该问题分布的概念简单性。为了提高性能,我们提出培训验证者来判断模型完成的正确性。在测试时间,我们生成许多候选解决方案,并选择验证者排名最高的解决方案。我们证明,验证显着提高了GSM8K的性能,我们提供了强大的经验证据,即验证尺度更有效地具有比FineTuning基线的数据增加。
translated by 谷歌翻译
Many real-world applications of language models (LMs), such as code autocomplete and writing assistance, involve human-LM interaction, but the main LM benchmarks are non-interactive, where a system produces output without human intervention. To evaluate human-LM interaction, we develop a framework, Human-AI Language-based Interaction Evaluation (H-LINE), that expands non-interactive evaluation along three dimensions, capturing (i) the interactive process, not only the final output; (ii) the first-person subjective experience, not just a third-party assessment; and (iii) notions of preference beyond quality. We then design five tasks ranging from goal-oriented to open-ended to capture different forms of interaction. On four state-of-the-art LMs (three variants of OpenAI's GPT-3 and AI21's J1-Jumbo), we find that non-interactive performance does not always result in better human-LM interaction and that first-person and third-party metrics can diverge, suggesting the importance of examining the nuances of human-LM interaction.
translated by 谷歌翻译
State-of-the-art computer vision systems are trained to predict a fixed set of predetermined object categories. This restricted form of supervision limits their generality and usability since additional labeled data is needed to specify any other visual concept. Learning directly from raw text about images is a promising alternative which leverages a much broader source of supervision. We demonstrate that the simple pre-training task of predicting which caption goes with which image is an efficient and scalable way to learn SOTA image representations from scratch on a dataset of 400 million (image, text) pairs collected from the internet. After pre-training, natural language is used to reference learned visual concepts (or describe new ones) enabling zero-shot transfer of the model to downstream tasks. We study the performance of this approach by benchmarking on over 30 different existing computer vision datasets, spanning tasks such as OCR, action recognition in videos, geo-localization, and many types of fine-grained object classification. The model transfers non-trivially to most tasks and is often competitive with a fully supervised baseline without the need for any dataset specific training. For instance, we match the accuracy of the original ResNet-50 on ImageNet zero-shot without needing to use any of the 1.28 million training examples it was trained on. We release our code and pre-trained model weights at https://github.com/OpenAI/CLIP.
translated by 谷歌翻译